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1 Introduction

High-level motivation: When planning and learning to solve complex tasks, an agent should
consider only the aspects needed to reach its goal. That is, an agent should be able to focus on what
is relevant and ignore what is redundant or unnecessary to its goal (while adhering to any added
conditions and constraints). Abstraction of the world and an agent’s interaction with it are key
to planning over long time horizons (e.g., navigation example, traveling between landmarks versus
fine-motor skills). Hierarchical methods apply the principle of divide-and-conquer, decomposing a
task in terms of successively smaller problems. A hierarchy of tasks captures the relations among
them and an order in which sub-goals and the overall goal may be reached. Abstraction and
hierarchical methods merge naturally, since tasks at distinct levels of the hierarchy may need forms
of abstraction to consider fewer or different details of the environment. Both states and actions
may be subject to abstraction, such as with state aggregation or skills.

Problem statement: We consider the role and effect of time in abstract tasks, and the impact
of its abstraction on the quality and efficiency of an agent’s solution. Existing methods typically
rely on only one form of temporal abstraction: geometric discounting.

In this form of abstraction, the value of future states is discounted by a scalar discount term
(γ, standard in the Bellman equation) raised to the k number of primitive actions (identical to the
number of “actual” time-steps in the Markov process).

The term “temporal abstraction” is used synonymously with methods that apply abstraction
to the action set (e.g., options, RMAXQ). In effect, though, these geometric discounting methods
still have knowledge of actual time: they employ k directly in their computation. As humans,
we rarely account for the lowest level discretization of time in our abstract, long-term planning
(and, certainly, we are not doing geometric discounting). What we want is to consider decision-
making with a hierarchy of tasks where actual time is abstracted away from higher levels, planning
without knowledge of k, or at least without dependence on the literal value of k. Instead, for time
abstraction, agents will either operate over relative time, re-weight the effect of actual time based
on their context and goals, or ignore time altogether.

Abstracting Time Methods of abstracting or otherwise dealing with time in abstract tasks:

• Geometric discounting in Bellman updates (i.e., using the multi-time model). RMAXQ is an
example.
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• Naive discounting (# of abstract steps is known, but there is no knowledge of primitive
actions). The original definition of AMDPs in the ICAPS paper is an example.

• Order-of-Magnitude discounting. Estimate for options sketched out below.

• No discounting (treat given task like MAB setup, ignoring sequential decisions). DA: George
does this in his skill symbol loop work. He assumes all primitive actions have a
fixed cost and the MDP contains an absorbing state.

• Others?

DA: Michael read the above: “The description of discounting as a form of temporal
abstraction isn’t quite landing for me. How important is this idea? If it’s important,
is there another way to make the case?”

2 Meeting Notes

2.1 August 8th Meeting

Vision:

1. Exact number of time steps doesn’t matter

2. Where does multi-time model fail?

3. Kappa fixes!

New things to focus on:

• Value iteration converges with κ

• Try: V ∗ − V κ bound for γκ−1 Reward.

• Variance of κ? Low variance? If we assume we only have options with low variance on kappa,
. . ..

• Weaknesses of multi-time model?

• AAAI draft?

2.2 July 4th Checkpoint

Recent issues/points of focus:

• Moving toward a κ discounted reward as well:

V o
κ (s) = γκ

o
s−1R(s, o) + γκ

o
s

∑
s′

T (s, o, s′)V o
κos

(s′) (1)

So, we need a version of the V ∗ − Vκ̂ with the new discounted reward. Recall that the
multi-time model goes up to t+ k, the random time the option terminates.
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• Action Item: write out the multi-time reward model. Write out Equation (10) and (11)
from the original paper.

• Can we articulate clearly what the problem is with the multi-time model? Two sides: (1)
Motivation for κ (humans give rough estimates/order of magnitudes), and (2) Multi-time
model is too complex.

• John and co will continue to work on experiments.

• Future work: might consider Lipschitz option models.

3



3 The Multi-Time Model

Recall the traditional multi-time transition model is as follows:

Tγ(s, o, s′) =
∞∑
t=0

γt Pr(st = s′, β(st) | s, o), (2)

=
∞∑
t=0

γtβ(st)
t∏
i=1

(1− β(si−1)) · T (si−1, o.π(si−1, si)). (3)

Similarly, the reward model is given as:

Rγ(s, o) = E(s1,...,sk)

[
r1 + γr2 + . . .+ γk−1rk

∣∣∣ s, o] (4)

But what is the expectation over? From (author?) [1], I think it’s as follows:

Rγ(s, o) = E(s1,...,sk)

[
r1 + γr2 + . . .+ γk−1rk

∣∣∣ s, o] (5)

=
∑

(s1,...,sk)

Pr(s1, . . . , sk | s, o)
(
r1 + γr2 + . . .+ γk−1rk

)
(6)

(7)

3.1 Computing the Multi-Time Model

We here consider the computational cost of constructing the multi-time model:

Definition 1 (MT-Model): We let MT-Model define the following computational problem:

Input: An MDP M , an option, o.
Output: The model for option o: both Rγ and Tγ.

So, how hard is this?

Let SI,o denote the states for which o is active. Clearly |SI,o| ≤ S.
For each s ∈ SI,o how much work do we have to do?

Assumption: No option can run for more than h steps. We’ll call this model:

Tγ,h(s, o, s′) =
h∑
t=0

γt Pr(st = s′, β(st) | s, o), (8)

We know for any MDP there is an h ≤ Diam(M).

Suppose at each state, the “branch” of an option policy is at most b – that is, the number of
states s′ such that T (s, o.π(s), s′) ≥ 0.

Then, by these two assumptions, we get a tree of depth h with branching factor b. So, at
most hb nodes in the tree, assuming no overlap. Each node we do one unit of work: propagating
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probability mass via β, γ, and T .

Naively, then, we get O
(
hb
)

computational time. The order of magnitude doesn’t really change
as we add more states, we just adjust b proportionally.

Goal: Give a lower bound for MT-Model in terms of |S|, |A|, and H(T ), and H(o.π).

Ultimately, we want to show that under our variant, you can compute the same problem more
quickly, efficiently, with lower variance. Additionally, we also know we only need to compute out
to a final threshold, κ.

3.2 Shortcomings

There are a few reasons to find the multi-time model undesirable:

1. Increased variance in both Tγ and Rγ relative to T and R.

2. The samples we get are not from samples from the distribution for which the multi-time
model is the expectation.

3. Computing the actual multi-time model, assuming we know all of o, β, γt,Pr(st = s | s0, o),
is hard.

Now, in more detail.

3.2.1 Higher Variance

First, it strictly adds variance to the transition model. That is:

Var
[
Tκ(s, o, s′)

]
≤ Var

[
Tγ(s, o, s′)

]
, (9)

where Tκ(s, o, s′) is the actually probability of landing in state s′ after executing o in s, using κ
(defined below). Note that here we’re talking about the variance of the random variable s′, given
s and o.

I suspect that, as a result of the increased variance in Tγ , we also find an increased variance in
Rγ relative to R.

3.2.2 Sampling Distribution

The samples we get when executing an option in the environment are of the form:

s0, πo(s0), r0, s1, πo(s1), . . . , rn−1, sn, (10)

where I(s0) = 1 and β(sn) =∼ 1.

Multi-time model is already biased?
Definition 2 (Bias): The bias of an estimator, µ̂, is its gap from the true expected value in

the limit of data:
Bias(µ̂) (11)
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DA: TODO: write the bias claim out for Rγ and Tγ.

3.2.3 Computational Difficulties

By anecdote from James, computing the option models Tγ and Rγ is difficult.

Q: Can we show how difficult? What information do we need to have?

A: Suppose we’re in a planning setting, so we’re given M , and a collection of k options O. We’d
like to then create the option models for each o ∈ O.

Definition 3 (Option Model Problem): Computing Option models defines the following com-
putational problem:
Input: M , O
Output: ∀o∈O : Tγ,o,Rγ,o.

3.2.4 Space and Sample Complexity

Q: Does the κ model store less? Does it ensure we need less data from our environment?

Two potential kinds of sample complexity:

• Number of samples needed to learn Tκ and Rκ vs. Tγ and Rγ

• Number of samples learning with Aκ needed to reach:

V ∗κ − V Aκ
κ ≤ ε. (12)

(Even though V ∗ 6= V ∗κ ).

DA: TODO: take a look at the Brunskill/Li paper SMDP-RMax.
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4 Main Idea Brainstorm: New Option Models

The main focus of this work is to introduce an alternate model for an option. Our hope is that
these new option models are easier to learn and compute, while still retaining sufficient information
to be useful for decision making.

New Option Model. We investigate two assumptions that may lead to more effective models:

1. Assume that each option can self report its expected number of time steps (in terms of the
level i− 1 actions, for an option at level i):

κso = Eoπ ,M [t : β(st) | s]. (13)

→ Then, we can use this estimate for computing the option transition model discount and
reward.

2. Assume the option’s number of time steps executing has low variance. That is:

Var [t : β(st) | s, oφ] ≤ τ. (14)

Taking both assumptions gives us an option model that: (1) Can report the expected number
of primitive steps taken by the option, if it were executed in a given state, and (2) Has low variance
over the number of primitive steps taken. This second assumption may be critical in showing how
accurate (1) will be.

As with traditional R-Max, to estimate κ we can use the empirical estimator:

κ̂so ,
1

n

n∑
i=1

ki. (15)

Consequences of τ . First, since we know the variance of this quantity is upper bounded by
τ , we can use concentration inequalities with known variance to compute a tighter sample bound
for accurately estimating κ. Are there others? Can we ensure that the transition model will be
sufficiently similar?

4.1 Theory Results

We target two groups of results:

1. Learning κ: After how many samples can we guarantee κ̂ is similar to κ? DA: [DONE]

2. Bounding Value

(a) Lemma 4.2: Tγ − Tκ ≤ DA: [DONE]

(b) Lemma 4.3: V ∗ − Vκ ≤ DA: [DONE]

(c) Lemma 4.4: Tκ − Tκ̂ ≤ DA: [DONE]

(d) Lemma 4.5: Vκ − Vκ̂ ≤ DA: [DONE]

(e) Theorem 4.6: V ∗ − Vκ̂ ≤ DA: [DONE]
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4.2 Result: Estimating κ

Theorem 4.1. For a given δ, ε, a level i option o, a max horizon h ≤ 1
1−γ , and state s, after

m ≥ −h2 ln( δ2)
2ε2

executions of o in s, we can produce an empirical estimate of the number of i − 1
time steps taken by the option that is ε close to the true expected step number with high probability:

Pr{|κso − κ̂so| < ε} > 1− δ. (16)

Proof. Pick any δ ∈ (0, 1] and ε ∈ [0, h] DA: Here we’d probably assume h ≤ 1
1−γ , maybe

even scaled as a function of i, an option o = 〈I, β, π〉, and a state s.
Let the empirical estimator for o.e based on m samples be denoted:

κ̂so,m ,
1

m

m∑
i=1

ki. (17)

By the Hoeffding inequality:

Pr{|κso − κ̂so,m| ≥ ε} ≤ 2 exp

(
− 2m2ε2∑n

i=1(0− h)2

)
= 2 exp

(
−2m2ε2

m · h2

)
= 2 exp

(
−2mε2

h2

)
.

Thus:

Pr{|κso − κ̂so,m ≤ ε} ≥ 1− 2 exp

(
2mε2

h2

)
. (18)

Letting δ = 2 exp
(
−2mε2

h2

)
:

δ = 2 exp

(
−2mε2

h2

)
ln

(
δ

2

)
= −2mε2

h2

h2 ln

(
δ

2

)
= −2mε2

−
h2 ln

(
δ
2

)
2ε2

= m

Thus, for m ≥ −h2 ln( δ2)
2ε2

, we conclude that:

Pr{|κso − κ̂so| < ε} > 1− δ.
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4.3 Results: Option Model and Value Estimation

Now, supposing we have options with nearly-accurate empirical estimates, we want to know how
badly the approximation can affect the quality of the policy/plan we find after planning.

Lemma 4.2. The multi-time transition model has bounded difference from the expected-time step
model:

∀s,o,s′ : Tγ(s, o, s′)− Tκ(s, o, s′) ≤ min{(h− κ)γκe−βminκ, 1}, (19)

for h a bound on the maximum number of steps taken by the option and βmin the minimal probability
of the option terminating in a state. Moreover, their absolute difference is bounded:

∀s,o,s′ : |Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ max {κγ, (h− κ)γκ} e−κβmin . (20)

Proof. For a fixed but arbitrary state–option–state triple (s, o, s′), let κ denote κos, and by assump-
tion let h = 1

1−γ be the maximum number of steps taken by an option:

Tγ(s, o, s′)− Tκ(s, o, s′) =

h∑
t=1

γt Pr(st = s′, β(st) | s, o)− γκ
h∑
t=1

Pr(st = s′, β(st) | s, o) (21)

=
h∑
t=1

(γt Pr(st = s′, β(st) | s, o)− γκ Pr(st = s′, β(st) | s, o)) (22)

=
h∑
t=1

(γt − γκ) Pr(st = s′, β(st) | s, o) (23)

=

h∑
t=1

(γt − γκ) Pr(st = s′ | s, o) · Pr(β(st)) (24)

Note that Pr(st = s′ | s, o) is bounded above:

Pr(st,= s′ | s, o) ≤ (1− βmin)t, (25)

since, to be in state st at time t, we have to not terminate in each of s1, . . . st. Further, we know
that:

(1− x)t ≤ e−xt (26)

for any x ∈ [0, 1]. Therefore:
Pr(st,= s′ | s, o) ≤ e−βmint. (27)

So, rewriting:

Tγ(s, o, s′)− Tκ(s, o, s′) =

h∑
t=1

(γt − γκ) Pr(st = s′ | s, o) · Pr(β(st)) (28)

≤
h∑
t=1

(γt − γκ)e−βmint. (29)
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But, note that when t ≤ κ, for any βmin ∈ [0, 1]:

(γt − γκ)e−βmint ≤ 0. (30)

Therefore:

Tγ(s, o, s′)− Tκ(s, o, s′) ≤
h∑
t=1

(γt − γκ)e−βmint (31)

≤
h−κ∑
j=1

(γj+κ − γκ)e−βmin(j+κ) (32)

=
h−κ∑
j=1

(γjγκ − γκ)e−βmin(j+κ) (33)

=

h−κ∑
j=1

γκ(γj − 1)e−βmin(j+κ) (34)

≤
h−κ∑
j=1

γκe−βmin(j+κ). (35)

Since 0 ≤ e−x ≤ 1 for x ≥ 0, we conclude:

Tγ(s, o, s′)− Tκ(s, o, s′) ≤
h−κ∑
j=1

γκe−βmin(j+κ) (36)

≤ (h− κ)γκe−βminκ.

DA: Okay, now the absolute value version
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Proof.

|Tγ(s, o, s′)− Tκ(s, o, s′)| = |
h∑
t=1

γt Pr(st = s′, β(st) | s, o)− γκ
h∑
t=1

Pr(st = s′, β(st) | s, o)| (37)

= |
h∑
t=1

(γt − γκ) Pr(st = s′ | s, o) · Pr(β(st))| (38)

= |
κ∑
t=1

(γt − γκ) Pr(st = s′, β(st) | s, o)+ (39)

h∑
j=κ+1

(γj − γκ) Pr(sj = s′, β(sj) | s, o)| (40)

= |
κ−1∑
t=1

(γκ−t − γκ) Pr(sκ−t = s′, β(sκ−t) | s, o)+ (41)

h−κ∑
j=1

(γκ+j − γκ) Pr(sκ+j = s′, β(sκ+j) | s, o)| (42)

= |
κ−1∑
t=1

(
γκ

γt
− γκ) Pr(sκ−t = s′, β(sκ−t) | s, o)+ (43)

h−κ∑
j=1

(γκγj − γκ) Pr(sκ+j = s′, β(sκ+j) | s, o)| (44)

= |γκ
κ−1∑
t=1

(
1

γt
− 1) Pr(sκ−t = s′, β(sκ−t) | s, o)+ (45)

γκ
h−κ∑
j=1

(γj − 1) Pr(sκ+j = s′, β(sκ+j) | s, o)| (46)

= γκ|
κ−1∑
t=1

(
1

γt
− 1) Pr(sκ−t = s′, β(sκ−t) | s, o)︸ ︷︷ ︸

X

+ (47)

h−κ∑
j=1

(γj − 1) Pr(sκ+j = s′, β(sκ+j) | s, o)︸ ︷︷ ︸
Y

|. (48)

Note that if X ≥ |Y |, we can drop Y , and similarly, if X ≤ |Y |, we can drop X. Thus, we
proceed by cases:

Case 1: X ≥ |Y |
So, we want to maximize X to establish the bound. Therefore, we choose γt to be as small as

possible, which is satisfied at γκ−1. Therefore:
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|Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ γκ|X + Y | (49)

(Case 1) = γκ|
κ−1∑
t=1

(
1

γt
− 1) Pr(sκ−t = s′, β(sκ−t) | s, o)| (50)

≤ γκ
κ−1∑
t=1

(
1

γκ−1
− 1

)
Pr(sκ−t = s′, β(sκ−t | s, o) (51)

≤ γκ
κ−1∑
t=1

(
1

γκ−1
− 1

)
e−βmin(κ−1) (52)

≤ γκ(κ− 1)

(
1

γκ−1
− 1

)
e−βmin(κ−1). (53)

For brevity, we conclude that in Case 1:

|Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ κγκ

γκ−1
exp{−βmin(κ− 1)} (54)

= κγκ−(κ−1) exp{−βmin(κ− 1)} (55)

= κγ exp{−βmin(κ− 1)}. (56)

Case 2: X ≤ |Y |

Here, we want to minimize Y , thus maximizing |Y |. So, we set γj to be minimal, which is
achieved at γh−κ:

|Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ γκ|X + Y | (57)

≤ γκ|
h−κ∑
j=1

(γh−κ − 1) Pr(sκ+j = s′, β(sκ+j) | s, o)| (58)

≤ γκ|
h−κ∑
j=1

(
γh

γκ
− 1) Pr(sκ+j = s′, β(sκ+j) | s, o)| (59)

≤ γκ|
h−κ∑
j=1

(
γh

γκ
− 1) exp{−βmin(κ+ j)}| (60)

≤ γκ|(h− κ)(
γh

γκ
− 1) exp{−βmin(κ)}| (61)

≤ γκ| − 1 · (h− κ) exp{−βmin(κ)}| (62)

= γκ · (h− κ) exp{−βmin(κ)}. (63)

And that’s it. So, basically, the bound comes out to one of those two. We can max over them:

|Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ max
{
κγe−βmin(κ−1), (h− κ)γκe−βmin(κ)

}
. (64)
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We can consolidate the bound further by noting that for all κ ≥ 1, e−κ ≥ e−κ−1. Thus, we
simplify:

|Tγ(s, o, s′)− Tκ(s, o, s′)| ≤ max {κγ, (h− κ)γκ} e−κβmin . (65)
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Lemma 4.3. Suppose πo : S → O represents an arbitrary fixed policy over options. Let V π
κ denote

the estimated value under π using the option’s expected time steps:

V π
κ = R(s, π(s)) + γκ

∑
s′

Tκ(s, π(s), s′)V π
κ (s′). (66)

Then, the expected-time-step value V πo
κ is close to the true value V πo:

∀s∈S : V πo(s)− V πo
κ (s) ≤ (h− κ)γκ exp{−κβmin}

|S|RMax

1− γ
. (67)

DA: Honestly it doesn’t look like we need the absolute value version of the previous
lemma for this result, which is weird.

Proof. We proceed by induction on the number of time steps for which the value estimate uses the
model Tκ in place of the true model Tγ . We let V πo

κ,x(s) denote the value of state s under V πo
κ for

the first x steps, then under V πo for every step thereafter. For brevity, let eβ denote exp{−κβmin}.

Base Case : x = 1

For a single time step:

V πo(s)− V πo
κ,1(s) =

[∑
s′

Tγ(s, πo, s
′)V πo(s′)

]
−

[∑
s′

Tκ(s, πo, s
′)V πo(s′)

]
=
∑
s′

V πo(s′)
(
Tγ(s, πo, s

′)− Tκ(s, πo, s
′)
)

(By Lemma 4.2) ≤
∑
s′

V πo(s′)(h− κ)γκeβ

≤ (h− κ)γκeβ ·
|S|RMax

1− γ
.

For brevity, let A = (h− κ) · eβ · |S|RMax
1−γ . Thus, the bound can be expressed as γκ ·A.

Inductive Case : x > 1

We let the inductive hypothesis denote the following:

V πo(s)− V πo
κ,x(s) ≤ γκ ·A. (IH)

We want to show:
V πo(s)− V πo

κ,x+1(s) ≤ γ
κ ·A. (68)
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Let g = (h− κ)eβ. By algebra:

V πo(s)− V πo
κ,t+1(s) =

∑
s′

TγV (s′)− TκV πo
κ,x(s′)

≤
∑
s′

TγV (s′)− (Tγ − gγκ)Vκ,x(s′)

=
∑
s′

TγV (s′)− TγVκ,x(s′) + gγκVκ,x(s′)

≤
∑
s′

TγV (s′)− TγV (s′) + Tγγ
κ ·A+ gγκVκ,x(s′)

=
∑
s′

Tγgγ
κVκ,x(s′)

≤
∑
s′

Tγgγ
κ + gγκV (s′)− gγκ︸︷︷︸

≤Tγ

gγκ

≤
∑
s′

Tγgγ
κ + gγκV (s′)− Tγgγκ

=
∑
s′

gγκV (s′)

= γκg|S|VMax

= γκ (h− κ)eβ
|S|RMax

1− γ︸ ︷︷ ︸
A

= γκ ·A.

Alright, we actually need another result. Per Theorem 4.1, we know κ ≈ε κ̂, but we still have
to show how similar that makes their transition models. So, we introduce the following lemma.
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Lemma 4.4. Suppose we’re given κ̂so as computed by the sample bound in Theorem 4.1. That is:

Pr {|κso − κ̂so| < ε} > 1− δ. (69)

Then, the difference in their transition models Tκso and Tκ̂so are upper bounded:

∀s,o,s′ : Tκso − Tκ̂so ≤ γ
κ(1− γε). (70)

Proof. The argument is nearly identical to the previous two lemmas. By algebra, with high prob-
ability:

Tκso − Tκ̂so ≤ γ
κso

∞∑
t=1

Pr(st = s, o.β(st) | s, o)− γκ̂
s
o (71)

≤ γκso
∞∑
t=1

Pr(st = s, o.β(st) | s, o)− γκ
s
o+ε
∑
s′

Pr(st = s, o.β(st) | s, o) (72)

= γκ
s
o

∞∑
t=1

Pr(st = s, o.β(st) | s, o)− γκ
s
oγε
∑
s′

Pr(st = s, o.β(st) | s, o) (73)

≤ γκso − γκsoγε (74)

≤ γκso(1− γε).
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Lemma 4.5. For a given δ ∈ [1, 0) and arbitrary fixed policy over options πo, the value under the

true κ compared to the empirical mean, κ̂m, estimated after m ≥ −h2 ln(δ/2)
2ε2

, has bounded difference
from the actual Vκ with probability 1− δ:

∀s∈S : V πo
κ (s)− V πo

κ̂m
(s) ≤ γκso(1− γε)|S|RMax

1− γ
. (75)

Proof. Recall that κ̂, by Theorem 4.1, for a given δ ∈ (0, 1] and ε ∈ (0, 1], κ̂ can be sufficiently close
to the true κ:

Pr
{
|κso − κ̂so,m| < ε

}
> 1− δ. (76)

If the two are arbitrarily far apart (the case that occurs with probability δ), then the values too
can be arbitrarily far apart. Thus, with probability δ, the two deviate by at most VMax.

Consider the other case, which occurs with 1 − δ probability, in which they are similar for a
fixed but arbitrary state s. By the same proof technique that led to Lemma 4.3 (but here we have
γκ

s
o(1− γε) different models instead of gγκ), we conclude that with probability 1− δ:

∀s∈S : V πo
κ (s)− V πo

κ̂m
(s) ≤ γκso(1− γε)|S|RMax

1− γ
. (77)
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Theorem 4.6. For a given δ ∈ (0, 1] and ε, the value difference between the true value, V πo(s)
and the value under an approximate κ, V πo

κ̂δ,ε
(s), for any state, for any fixed policy over options πo,

is bounded above with probability 1− δ:

∀s∈S : V πo(s)− V πo
κ̂δ,ε

(s) ≤ γκ|S|VMax ((h− κ)eβ + (1− γε)) . (78)

Proof. The proof follows directly by applying the triangle inequality to Lemma 4.3 and Lemma 4.5.
The former states:

∀s∈S : V πo(s)− V πo
κ (s) ≤ (h− κ)γκeβ|S|VMax, (79)

while the latter states, with probability 1− δ:

∀s∈S : V πo
κ (s)− V πo

κ̂δ,ε
(s) ≤ γκ(1− γε)|S|VMax. (80)

Thus, we conclude.

5 Taxi Example

κos. We could do γκ
o
s . Normally, we have γ1, instead we have options that say they take κ steps on

average, so do γκ:

V o
κ (s) = γκ

o
s−1R(s, o) + γκ

o
s

∑
s′

T (s, o, s′)V o
κos

(s′) (81)

V o
κ (s) = γκ

o
s−1R(s, o) + γκ

o
s

∑
s′

T (s, o, s′)

[
γκ

o
s′−1R(s′, o) + γκ

o
s

∑
s′′

T (s′, o, s′′)V

]
. (82)

Goal: Want to create an estimate when the option model is correct using data collected from
usual RL (includes outliers/garbage data). Will settle than optimal policy.
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