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Abstract

In real-world environments, intelligent agents often face chal-
lenges with complex goals in large state-action spaces. Solv-
ing these tasks is computationally intractable for standard
planning and learning methods due to the need to search over
extremely long sequences of primitive actions to reach a goal.
Hierarchical methods enforce structure over generated poli-
cies to simplify these problems, typically by identifying re-
peated patterns of behavior and decomposing the overall goal
into a graph of subtasks. Solutions to smaller tasks are found
independently and then combined to complete the original
task. Abstract Markov decision processes (AMDPs) support
this process by defining an individual Markov decision pro-
cess for every subtask, each with its own separate model, ab-
stracted relative to the base domain. While this framework
is effective at solving large planning problems, it has previ-
ously required a domain expert to hand-define the complete
hierarchical structure and the transition and reward dynam-
ics for each task. To automate the process of creating these
hierarchies, we propose R-AMDP, which integrates task hi-
erarchy construction algorithms with model-based reinforce-
ment learning to learn entire abstract hierarchies solely from
an agent’s experiential data. The R-AMDP agent shows com-
putational and performance improvements when compared to
the baseline, R-MAXQ.

Introduction
Decision-making agents operating in large, stochastic, and
feature-rich environments require planning over long action
sequences to complete their goals. The state-action spaces of
these domains typically grow combinatorially as the number
of objects in the state increases. Traditional planning meth-
ods scale poorly in such domains, because they must search
for a solution trajectory consisting solely of primitive ac-
tions. Real-world environments quickly become infeasible,
even for agents with considerable resources.

To address this combinatorial explosion, hierarchical
methods in reinforcement learning and planning are devel-
oped to scale appropriately, making such problems tractable.
This aim is achieved through various means, such as by iden-
tifying repeated patterns of behavior, as with options (Sut-
ton, Precup, and Singh 1999), or decomposing a complex
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goal into simpler, reusable subtasks, as with MAXQ (Diet-
terich 2000). Hierarchies allow an agent to reason over only
relevant actions at the appropriate level of abstraction for
each task. This approach resembles the way in which hu-
mans naturally tackle complex tasks by breaking them down
into sequences of simpler, more manageable steps. Hierar-
chical methods also facilitate knowledge transfer, where ex-
perience gained from solving one subtask is retained and
reused for future, related tasks. When agents need to com-
plete the same or similar tasks multiple times to accom-
plish their overall “root” goal, reuse of task solutions is
key to not repeatedly solving the same problem. One sig-
nificant consideration with hierarchical methods, however,
is the source of structure. Frequently, human experts hand-
design the components of a hierarchy, which include the hi-
erarchical structure, subtask policies, value functions, and
models.

A recently developed hierarchical method, planning over
abstract Markov decision processes (AMDPs), decomposes
a decision-making domain into a task hierarchy: a directed
acyclic graph of subtasks (Gopalan et al. 2017). AMDPs go
beyond the existing MAXQ formalism by defining each sub-
task as a separate MDP, complete with a local model (reward
function and transition probabilities) and its own state-action
space abstracted from the base domain. They provide a con-
siderable increase over the classic options and MAXQ-style
approaches in terms of both performance and efficiency. De-
spite AMDPs’ vastly improved planning time, to date, they
require a significant amount of expert knowledge in the gen-
eration of both the state abstraction and the models used in
each AMDP subtask, as well as the specification of the task
hierarchy itself.

Our goal is to enable agents to learn components that
were previously expert-defined, hypothesizing the hierarchi-
cal structure of subtasks and then learning the models for
each task, purely from experience. We present a novel for-
malism, R-AMDP, that builds a task hierarchy and employs
separate model-based reinforcement learning processes at
every subtask to approximate the local transition and reward
functions of AMDPs. We demonstrate empirically that R-
AMDP offers considerable gains in performance over ex-
isting methods, learning both hierarchies and abstract task
models, without the need of expert knowledge to define any
subtask relations, state abstractions, transitions, or rewards.



Background
We consider decision-making in uncertain domains, and dis-
cuss the model-based and hierarchical methods that provide
the backbone of our contribution.

MDPs. Stochastic planning and reinforcement learning
are typically described by Markov decision processes
(MDPs). Formally, an MDP is a four-tuple {S,A,T,R},
with states S, actions A, transition probabilities T, and
a reward function R. An object-oriented MDP (OO-
MDP) (Diuk, Cohen, and Littman 2008) is a factored-state
representation that extends the MDP formalism by repre-
senting states as collections of objects, each with a set of
instantiated values for predefined attributes. The state of an
OO-MDP domain is defined as the union of the attribute val-
ues for all objects in the domain. OO-MDPs allow designers
to convey transition and reward information through simple
conditional structures that express intuitive relationships be-
tween the attributes.

R-MAX. Model-based agents are a class of reinforcement
learners that approximate models (T and R of an MDP)
from experiential data obtained as they explore a domain.
These estimated models grant the agent an understanding
of how its environment works, allowing it to plan a policy
that achieves its intended goal. As the agent gathers more
data during exploration, the agent’s model converges to the
true model, and the resulting policies converge towards op-
timality. R-MAX (Brafman and Tennenholtz 2002) is one
such approach that employs the strategy of optimism-under-
uncertainty.

MAXQ. One classic hierarchical method is MAXQ (Diet-
terich 2000). MAXQ begins by decomposing an MDP into
a set of smaller MDPs, one for each subtask, with transi-
tions and rewards derived from the base MDP. These MDPs
are organized into a task hierarchy: a directed acyclic graph
from a root goal to child (subtask) tasks, down to leaf tasks
that use primitive actions. Each subtask is more condensed
than the root goal, allowing the agent to make decisions
across reduced search spaces, then combine subtask solu-
tions together in a manner that achieves the root goal. By
defining such repeated tasks as subtasks of a hierarchy, an
agent produces subtask policies that are shared among all of
its parent tasks.

An agent leverages the MAXQ hierarchy by learning the
value function for each node expressed in terms of its chil-
dren’s value functions. MAXQ uses the value functions to
calculate an action value expressed as the value of the child
task plus a completion function. MAXQ’s completion func-
tions represent the expected discounted reward of the current
task i after completing subtask (or action) a while in state s,
C(i, s, a). Then, the action value is computed recursively—
Q(i, s, a) = V (a, s) + C(i, s, a)—in terms of the value of
the state for the child a (which in turn is computed using
Q at that lower level) plus the completion function of the
respective task. MAXQ achieves a recursively optimal so-
lution, meaning that the policy is optimal at each level of
the hierarchy under the assumption that its children are op-
timal. However, plans in MAXQ can be suboptimal from a

global perspective, depending the structure of the MAXQ
hierarchy. By trading optimality for near-optimal solutions,
recursively optimal methods offer significantly faster plan-
ning times.

R-MAXQ. R-MAXQ (Jong and Stone 2008) is a unique
learning agent that builds partial models of each task in a
given task graph. R-MAXQ applies R-MAX to learn the re-
wards and transitions of primitive actions while the model
dynamics of higher-level tasks are found by applying Bell-
man equations that relate the parent’s model to the children’s
model and recursively to the base actions. After the knowl-
edge of the ground MDP is propagated up the task hierarchy,
the agent is able to plan at an abstract level using a Greedy-Q
policy. After a bounded amount of exploration, the agent’s
hierarchical model will converge to a nearly optimal solu-
tion.

AMDPs. An abstract Markov decision process (AMDP)
hierarchy (Gopalan et al. 2017) is a framework derived from
the MAXQ method of decomposing a complex planning
problem into a series of actionable subtasks. Given some
base MDP to solve, an AMDP hierarchy is represented as
a graph similar to MAXQ. The root corresponds to the root
goal of the MDP; the leaves represent primitive actions to be
executed in the ground MDP; and all other nodes are sub-
tasks that function as the actions of the parent nodes. Com-
pared to MAXQ or R-MAXQ tasks, a key difference is that
each AMDP task node is a complete MDP, possessing its
own locally (not recursively) defined transition and reward
functions. Thus, an AMDP is an MDP where each state is
an abstracted representation of the base MDP. Formally, an
AMDP is a six-tuple {S̃, Ã, T̃, R̃, Ẽ ,F}, consisting of the
OO-MDP components with the addition of a state projec-
tion function of F : S → S̃ for mapping states from the base
MDP into the abstract state space of the AMDP. T̃, R̃, Ẽ are
unique to the given AMDP, and Ã consists of the AMDP’s
child subtasks, which can be either primitive actions or other
AMDPs.

AMDP hierarchies produce optimal policies at each
AMDP and, like MAXQ hierarchies, are recursively optimal
given correct local state abstraction, reward, and transition
functions. AMDP hierarchies enable top-down planning in
stochastic environments, such that an agent plans only for
subtasks that help achieve its main goal without comput-
ing plans for irrelevant subtasks. An AMDP is Markovian
with respect to its own state-action space and transitions.
The use of state abstractions, however, makes the abstract
higher-level problems not necessarily Markovian relative to
the base domain (Bai, Srivastava, and Russell 2016). The
execution of AMDP plans, thus, functions similarly to op-
tions in semi-Markov decision processes (Sutton, Precup,
and Singh 1999). One consideration that arises from this
property is the handling of failure in subtasks. There is no
inherent guarantee that non-goal termination conditions of
child AMDPs are reflected in the state space of a parent
AMDP. Thus, it is necessary when creating AMDPs that the
designer ensures both the projection function and terminal
sets are sufficiently expressive to capture such failure cases.



A limitation of AMDPs is that the structure and compo-
nents (the hierarchy, task nodes, mapping function, task re-
ward functions, and transition probabilities) must be spec-
ified by an expert. Moreover, expert-designed hierarchies,
either of AMDPs or with MAXQ, yield resulting policies
that, while recursively optimal with respect to themselves,
can be arbitrarily worse than other possible hierarchies with
different subtasks that solve the same root goal.

To address these issues and the broader goal of hierar-
chical decision-making, we introduce R-AMDP. R-AMDP
learns a hierarchies of subtasks with their state abstraction
and internal models from experiential data. This approach
retains the performance boost afforded by AMDPs while
completely alleviating the need for expert-encoded knowl-
edge.

R-AMDP Approach
R-AMDP provides a comprehensive hierarchical planning
and learning formalism that learns a MAXQ-like task hi-
erarchy first, statically from solution trajectories, and then
builds approximate models for each AMDP subtask in the
hierarchy online while solving its specific, global task.

Learning the Hierarchy Structure
To apply MAXQ in domains without an expert-designed hi-
erarchy, HI-MAT (Mehta et al. 2008), and later HierGen
(Mehta 2011), learns the structure of a task hierarchy by
leveraging the causal relationship between actions and state
variables (the attribute values of objects in state space). The
input to these methods is one or more solution trajectories,
in the form of vectorized state-action-state-reward transition
tuples, from an initial state to a terminal, or goal state. HI-
MAT and HierGen then annotate each trajectory with the
causal effects of actions. A causal edge between two ac-
tions, represented by a v−→ b, is created when a state vari-
able, v, is relevant to two actions, a and b. In this context, v
is relevant to a if a changes v, or v is checked by a in or-
der to change a different variable or calculate the reward of
executing a. These causal edges induce a MAXQ hierarchy
by tracing the edges backwards from the goal to find use-
ful subtasks. HI-MAT is more restrictive, relying on only a
single solution trajectory, while HierGen makes several im-
provements (learning action models, allowing for multiple
input trajectories), resulting in a more general hierarchy that
solves a broader range of target tasks than HI-MAT. Tra-
jectories can be created simply by training a standard agent
(e.g., Q-learning) on several MDPs drawn from a distribu-
tion for the same root task in a particular domain.

HierGen does causal annotation by training a decision tree
for each individual action to learn a dynamic Bayesian net-
work model of what state variables change upon executing
the action in the environment. With this set of decision trees
serving as learned action models, HierGen then analyzes
how actions causally affect changes in the state transitions
of the sampled trajectories. Causal annotation of a trajectory
proceeds by adding links that connect two actions, a and b,
over a state variable v, if and only if (1) a changes v, (2) b
checks v, and (3) v is not changed by any intervening ac-

tion. Here, a checks v if v is found in an internal node of the
decision tree of the variable that changed when a was exe-
cuted. Using this information, the algorithm searches for and
produces tasks by following the causal edges from the goals
in all trajectories, and accumulating the variables relevant to
those sequences of edges such that generated tasks general-
ize across all input trajectories. This produces the subtasks
structure learned completely from agent experience, which
is adapted into the AMDP hierarchy.

Creating the R-AMDP Hierarchy
AMDP hierarchies are similar to MAXQ hierarchies in
terms of the structure of tasks. R-AMDP leverages this simi-
larity by using a MAXQ hierarchy generator to create a tem-
plate for the AMDP hierarchy. In particular, an AMDP is
assembled from the MAXQ task components by creating a
state projection function that abstracts away the state vari-
ables that are causally irrelevant for that task. The action
space for the AMDP consists of its child nodes in the task hi-
erarchy, while the reward and transition model are undefined
until learned by the R-AMDP agent through model-based
reinforcement learning. A set of terminal states is also de-
fined implicitly for each task from the ending conditions of
subtask found by HierGen. By directly defining each com-
ponent of the MDP tuple, an AMDP is a complete MDP,
which can be solved independent of the other MDPs in the
hierarchy. The state abstraction generated by HierGen, con-
sisting solely of the relevant variables, guards against the
semi-Markovian issue of failure cases in AMDPs. In par-
ticular, any actions or variables that could lead to failure
cases will be placed at the highest task needed to recover
from them. For instance, the learned hierarchy we show in
Figure 1 has a primitive action as one of its subtasks be-
cause this action, and the variables related to it, could lead
to an irrecoverable failure state for that domain. However it
is still possible that HierGen may produce abstractions that
lead to other issues related to the semi-Markovian nature of
AMDPs; we plan to develop and analyze more sophisticated
methods in future work. Finally, the generated AMDP hier-
archy is capable of planning and learning with R-AMDP to
handle the undefined transition and reward functions.

Learning Models with R-AMDP
Learning the reward and transition functions for each AMDP
in a hierarchy follows the same process as learning on any
ordinary MDP.We select R-MAX as the method of learning
the transition and reward models to permit a more meaning-
ful comparison of R-AMDP results to the functionally sim-
ilar hierarchical model learner, R-MAXQ, which also em-
ploys R-MAX.

With R-MAX, when the agent enters an environment for
the first time, each action is treated as returning the maxi-
mum possible reward, and each state-action-state combina-
tion is considered equally likely1 (normalized to the number
of states, a uniform probability distribution over successor

1Such highly connected planning problems are intractable in
practice. We use a heuristic to select under-sampled actions first.



Algorithm 1 Planning with an R-AMDP hierarchy while
learning a model from experience

function R-AMDP-PLAN(H, i)
si ← Fi(s) . project environment state s
while si /∈ Ei do . execute until termination

π ← PLAN(si, i)
a← π(si)
j ← LINK(H, i, a) . a links to child task j
s′0 ← R-AMDP-PLAN(H, j)
s′i ← Fi(s

′
0)

if TASK-COMPLETE(j,s′i) then
UPDATE R-MAX MODEL(i, si, a, s′i, r)

si ← s′i
return s′0

states):

R(s, a) = rmax ∀ s ∈ S, a ∈ A,
T(s′|s, a) = |S|−1 ∀ s, s′ ∈ S, a ∈ A.

After each action taken by the agent, the corresponding
transition is recorded in the model according to the follow-
ing update rules: total reward r : S×A is initialized to 0 and
updated by r(s, a) ← r(s, a) + r, the state-action-state ob-
servations t : S×A×S are initialized to 0, and incremented
each time a given state-action-state transition is observe. The
counter of state-action observations n : S × A is also ini-
tialized to 0 and incremented after each observation. Once
n(s, a) reaches a threshold of observations m, the recorded
rewards and transitions are used to estimate the reward and
transition probability for that state-action pair:

R(s, a)← r(s,a)
n(s,a) and T(s′|s, a)← t(s,a,s′)

n(s,a) .

Once the m threshold is reached, the model is approximated
more accurately with each new observation.

As an R-MAX agent plans using its approximate model,
actions that have not reached the sample threshold are fa-
vored because these transitions are treated as if they re-
turn the maximum reward. This method effectively bal-
ances the need for exploration with exploiting the known
information, where unknown transitions are thought of as
promising and preferred until the threshold is reached and
the agent switches behavior, exploiting its collected knowl-
edge of the domain. R-MAX is a well studied algorithm,
proven to be probably approximately correct in Markov de-
cision processes (PAC-MDP), with guarantees of conver-
gence and bounded space and sample complexity (Strehl,
Li, and Littman 2009). Although model learning is effective
in reasonably sized domains, in larger domains, the strat-
egy becomes intractable due to the time complexity and
space requirements of maintaining tabular representations of
the MDP’s reward and transition functions. Our results will
demonstrate how hierarchical methods and model learning
are mutually beneficial in significantly reducing the infor-
mation that must be calculated and stored at any given point
in decision making.

When approximating a MDP model in a hierarchical
structure, the model update procedure must be altered

slightly to account for the unique qualities of hierarchical
modeling. In a flat MDP, the transitions, s, a, s′, r, are sam-
pled from the real environment, so they are known to re-
flect the MDP’s true dynamics. In an abstract MDP, the
actions are either primitive actions or non-primitive child
tasks. When a child task completes, it either completes its
goal or terminates in a failure state. These failure states are
states in the child’s state space in which the subtask is com-
pletely unreachable using the child’s action set. If a task’s
child completes its goal in state s′ with reward r, sampled
from the task’s pseudo-reward function defined by R-MAX,
then the transition will be included as part of the model of
the task. The other possible outcome is that s′ is a failure
state of the child. If the child was working correctly, it never
returns the failed state to the parent, so the R-MAX model
ascribes a zero probability to the task transitioning from s
to s′ when executing a. Therefore, this transition cannot be
recorded in the parent’s model, because doing so skews the
probability distribution of executing subtask a in state s.
These inaccuracies in the model produce incorrect plans at
the parent node and, when combined, introduce greater error
into the final plan.

The optimistic estimation of R-MAX ensures a degree of
initial exploration of the state space for each AMDP in the
hierarchy. By maintaining approximated models at every ab-
stract task, rather than only at the base MDP, R-AMDP en-
courages more high-level experimentation and recombina-
tion of intermediary subtasks. As the AMDP models begin
to converge, the policies created for each task likewise con-
verge to near-optimal solutions. After a bounded exploration
phase, our inspection found that R-AMDP produces hierar-
chical policies that are the same as or better than those found
by expert-designed AMDP hierarchies. The R-AMDP hier-
archy also maintains the guarantees of planning-time effi-
cient behavior that AMDP hierarchies provide. The learn-
ing of models in R-AMDP, thus, takes full advantage of
AMDPs’ power to solve hard problems, transferring knowl-
edge between similar tasks, while avoiding the need for do-
main experts to define abstract models.

Methodology
Taxi Domain. The fickle Taxi domain (Dietterich 2000) is
a discrete environment with a taxi agent, passengers, depot
locations, and impassable walls positioned on a constrained
map. The objective is for the taxi to deliver a passenger from
a source location to a goal location, each of which could be
any of the depots. The taxi can move in any cardinal direc-
tion that is not blocked by a wall, pick up a passenger when
they share the same position on the map, or drop off a held
passenger when the taxi is at a depot. Stochasticity in this
domain is generated from both the taxi’s slipperiness, where
the taxi has a 0.20 probability of moving perpendicular to its
intended direction on any navigational action, and the pas-
senger’s fickleness, where the passenger has a 0.05 proba-
bility of changing its desired destination on any transition
when in the taxi.

The taxi domain benefits greatly from hierarchical plan-
ning because the root objective is recursively decomposed
into disjoint subtasks. (However, the introduction of the



fickle passenger effectively penalizes hierarchical methods
because the passenger’s goal changes are abstracted away
from navigational subtasks. In the worst case, the agent may
complete the current navigation task, then return to the par-
ent task only to discover that the initially selected navigation
is no longer an optimal decision.) The top hierarchy in Fig-
ure 1 shows the expert-defined AMDP hierarchy for Fickle
Taxi. This hierarchy is the same as the originally published
taxi hierarchy, with one major difference: the inclusion of
bringon and dropoff AMDPs.

We evaluate the learning of task hierarchies from experi-
ence on the Taxi domain. The bottom hierarchy in Figure 1
shows the learned AMDP hierarchy for Fickle Taxi. Com-
pared to the expert-defined hierarchy, the most notable dif-
ference is that learned tasks are able to identify state abstrac-
tions that parameterize a task by object attributes. Specifi-
cally, the learning process for the Taxi hierarchy found that
the x-y coordinates of an object were causal parameters to
the actions related to navigation. Thus, the generated hierar-
chy reuses the same navigation AMDP model both for mov-
ing to a passenger and for moving to a goal. This sharing
leads to much greater sample efficiency while learning the
model, directly transferring behavioral knowledge among
object classes. Another benefit from using HierGen when to
construct the hierarchy from data is that more concise state
abstractions are generated for each subtask, since only the
state variables that are causally relevant are preserved.

Cleanup Domain. In this domain, an agent must navigate
a grid world composed of rooms, doors connecting them,
and objects that are maneuvered by being pushed and pulled.
Each state has one agent, a set of impenetrable block ob-
jects, some number of rectangular rooms that enclose open,
traversable space, and some number of doors connecting the
rooms. The agent’s goal is to put every object into a spe-
cific destination room, simulating a robot that needs to tidy
a house by putting things away where they belong, similar to
the game of Sokoban (MacGlashan et al. 2015). The agent
moves in the cardinal directions, pushing blocks forward by
moving into them. The agent also has an explicit action for
pulling blocks, which the agent uses when immediately fac-
ing a block to switch spaces with it (such as to move a block
out of a corner, away from a wall).

We use the same hierarchy of AMDPs as described in
previous work (Gopalan et al. 2017). The ROOT node of
the task graph consists of an abstract MDP where the agent
and block objects simply have an attribute for the current re-
gion, room or door, that they occupy. ROOT goal states are
those in which each block is in its correct destination region.
The ROOT possesses two parameterized subtasks: PICKA-
ROOMFORTHEAGENT and PICKAROOMFORTHEBLOCK.
For example, in a Cleanup domain with two rooms and one
block, there are four “pick“ actions, two each for picking a
room for the agent and picking a room for a block—that is,
one per room per object. Each pick action corresponds to an
AMDP that uses the same region-based abstraction as the
root AMDP, and has its goal met when the agent or block is
in the region specified by the action. The pick AMDPs have

Figure 1: The expert-defined (top) and learned (bottom)
AMDP hierarchies for the Taxi domain. Internal nodes are
each defined as an AMDP, each with its own model and state
abstraction; leaf nodes are primitive actions. Edges denote
the subtasks of the parent node that comprise its action set.
A labeled edge specifies a parameterized task’s object type.

child tasks for managing the movement of the agent or block
among rooms and doors, with four possible parameterized
actions: MOVEAGENTTODOOR, MOVEAGENTTOROOM,
MOVEBLOCKTODOOR, and MOVEBLOCKTOROOM. The
“move” AMDPs do not use state abstraction, so they are
similar to options (Sutton, Precup, and Singh 1999). In solv-
ing a move AMDP, a policy is computed for navigating to
the destination room or door in the base domain. These are
the lowest-level AMDP tasks, with access to the five prim-
itive actions. The task hierarchy for Cleanup differs from
Taxi because, rather than cleanly dividing an agent’s inten-
tions, as GET and PUT do for Taxi, the subtasks overlap
in their effects. Moreover, the Cleanup hierarchy is over-
complete in the sense that there are several ways to reach
the same global goal using completely different combina-
tions of subtasks (unlike Taxi, where GET and PUT must al-
ways be performed in precisely that order). Thus, we include
the Cleanup domain to demonstrate how doing model-based
learning over hierarchies (R-MAXQ and R-AMDP) works



Hyperparameter Taxi Cleanup
Independent trials per experiment 20 10
Episodes per trial 60 50
Max steps per episode 2000 300
Max ∆ threshold (value iteration) 0.01 0.0001
Max planner policy rollouts 1000 1000
R-MAX sample threshold 5 2

Table 1: Values used in experimental evaluation.

well in large domains, even when those hierarchies are wide,
offering multiple valid solutions.

Experimental Setup
For both the Fickle Taxi and Cleanup domains, we analyze
the performance of an R-AMDP model-learning agent, us-
ing R-MAXQ as a baseline for comparison. Each experi-
ment consists of a set of independent trials. Value iteration
serves as the planner inside the PLAN function of Algo-
rithm 1. Table 1 shows the details of the experimental setup
for both domains.

For Cleanup, the initial configuration consists of two
rooms, each 2-by-3 in size, connected in the middle hori-
zontally by a door, with a block in the lower right of the left
room and the agent in the upper left of the right room. The
goal is to take the block in the left room to the room on the
right (the agent must navigate through the door to the left,
then push/pull the block back through the door into the right
room).

Additionally, we investigate the effectiveness of R-AMDP
to learn models with hierarchies learned from data by apply-
ing HierGen’s structure learning to the Taxi domain, learn-
ing action models and causally annotating trajectories to
construct a task graph. We generate sample solution trajec-
tories using Q-learning execution traces run on a variety of
small, randomly generated Taxi domains. As in prior work
(Mehta 2011), our agent learns the action models via deci-
sion trees (Weka’s J48 algorithm) and then creates a task
graph from the causally annotated trajectories. Finally, this
HierGen-produced task graph is converted to a hierarchy
of AMDPs (with implicit state abstraction, based on the
causally relevant features) and compared with another R-
AMDP agent using the classic (expert-specified) Taxi task
hierarchy.

Results and Discussion
Model Learning
We compare the performance of R-AMDP to R-MAXQ us-
ing a hand-crafted hierarchy on a fickle taxi domain with
stochastic movement actions (Figure 2). The domain we
consider is a smaller version of Taxi: a 5-by-1 grid world
containing four depots (red, blue, green, and yellow), the
taxi (agent), and a passenger starting at the blue depot who
desires to go to the red depot. While both agents success-
fully explore and learn the environment at each node of the
task hierarchy, R-AMDP converges to the optimal policy
much sooner in the trial, with greater consistency across all

R-AMDP vs. R-MAXQ on Small Taxi

Figure 2: Cumulative reward for R-AMDP and R-MAXQ
on the Taxi domain, each using the expert-made hierarchy.
R-MAXQ must explore possible subtasks, repeatedly exe-
cuting long sequences of primitive actions that do not help
its overall policy. R-AMDP offer better high-level explo-
ration, effectively pruning unhelpful subtrees of its hierar-
chy.

Runtime of R-AMDP vs. R-MAXQ on Small Taxi

Figure 3: Runtime comparison of R-AMDP and R-MAXQ.
R-AMDP agents are significantly faster in execution, com-
pleting trials in seconds that takes R-MAXQ an hour or
more.

episodes. R-MAXQ sometimes fails to converge to a pol-
icy that consistently find a solution, due to the stochastic
nature of a fickle passenger. Further, R-MAXQ experiences
episodes where the agent’s lack of a complete model results
in random exploration of unknown states, causing decreases
in reward in later episodes. R-AMDP converges to a full
model of each task, leading to consistent results after con-
vergence to a near-optimal policy.

Another notable benefit to R-AMDP in comparison with
R-MAXQ is the difference in the algorithms’ runtime. Fig-
ure 3 shows the time (in milliseconds, on a logarithmic
scale) that each episode took to run the same set of trials.2
Overall, R-MAXQ takes several orders of magnitude more
computation time than R-AMDP to learn a model and policy
for the same domain. R-AMDP improves the runtime as the
policy converges towards near-optimality, while R-MAXQ

2Runtime analysis is performed on an Intel Core i7-4790K CPU
@ 4.00 GHz with 20GB of RAM.



R-AMDP vs. R-MAXQ on 2-Room, 1-Block Cleanup

Figure 4: Cumulative reward for R-AMDP and R-MAXQ
on the Cleanup domain. The confidence regions around the
graphed lines are visualized but small, indicating a statisti-
cally significant difference.

R-AMDP with Expert-Defined vs. Learned Hierarchy

Figure 5: R-AMDP with expert-defined and a HierGen-
learned Hierarchy on standard Taxi Domain.

continues to exhibit poor performance.
Results for the Cleanup domain are presented in Figure 4.

Both algorithms converge to an optimal hierarchical policy,
but the cumulative reward is a statistically significant dif-
ference, with R-AMDP outperforming R-MAXQ. Addition-
ally, R-AMDP is able to scale to larger Cleanup domains,
in terms of computational runtime, whereas R-MAXQ does
not. While we found a similar cumulative reward curve when
R-AMDP agents were run on 3-room-2-block domains and
more complex domains, R-MAXQ was unable to complete
trials of these types of domains in a reasonable amount of
time. This is due to the exponential growth of sampling rel-
ative to the number of terminal states and height of the hier-
archy.

Expert-Defined vs. Learned Hierarchies
The hierarchy generation technique was tested by compar-
ing two R-AMDP agents in the taxi domain, one on the
expert-designed task hierarchy and the other on the hier-
archy created by HierGen. Both agents were tested on the
5-by-5 taxi state containing four depots and one passenger
with stochastic movement and fickle goal location probabil-
ities. The learned hierarchy outperforms the expert-designed
hierarchy. While both agents converge to similar optimal

policies (Figure 5), the expert-designed hierarchy requires
more exploration because its hierarchy contains coarser task
parameterizations.

Advantages of R-AMDP
The advantages of R-AMDP are made evident by the results
on the Taxi domain. R-AMDP requires fewer Bellman up-
dates for each task node in the hierarchy, since R-MAXQ
must compute a model over all possible future states in a
planning envelope after each action. Therefore, R-AMDP
is much more scalable to large domains than R-MAXQ. In
exploring larger domains with more depots, we found that
R-AMDP could rapidly solve domains that R-MAXQ was
unable to complete in a practical time frame. As the state-
action space from R-MAXQ expands with non-zero tran-
sition values, more computation is required to recursively
compute a model used in planning at each task for all states
in the enlarged planning envelope. Further, the update of the
model in R-MAXQ occurs by recursively computing mod-
els for the children of each composite action, causing the
reachability computation to be exponential to the height of
the hierarchy. Since each task node in an AMDP hierarchy is
an independent learning problem, the execution of R-MAX
happens at each task node, and increases linearly with the
size of the hierarchy.

In general, the higher branching factor at the abstract lev-
els of the hierarchy used in Cleanup causes the R-AMDP
agent to explore more initially, relative to R-MAXQ, be-
fore it finds a good solution. However, by episode 10, on
average, R-AMDP is able to more consistently exploit its
abstract models. The self-contained nature of the abstract
“pick” models means that the R-AMDP agent determines
which “move” subtasks are not relevant to the task at hand
sooner. For example, suppose the agent is performing PICK-
ROOMFORBLOCK(ROOM2, BLOCK1) (which solves the
root goal), and consider it to be in the state after moving
from the original room to the room with the block. Once
the R-AMDP agent determines that moving back to the door
or the original room is not helpful to solving the goal at
that abstract level, it will cease the needless explorations
down those branches of subtasks, essentially (and correctly)
pruning them. R-MAXQ, on the other hand, computes its
abstract models recursively up from the subtasks, continu-
ally re-entering the original room to explore as many pos-
sible configurations of base states it finds. A central ben-
efit of AMDPs relative to MAXQ is the ability to expand
only those subtasks needed in the rollout of a hierarchi-
cal policy. The key insight demonstrated here is that the R-
AMDP formalism not only preserves this property, but prop-
agates this efficient handling of the exploration/exploitation
up to higher abstraction levels, allowing it to scale to larger
domains. The strength of R-AMDP to deal with subtask
branching allows it to solve the 3-room, 2-block Cleanup
domains (and larger ones), whereas R-MAXQ agents do not
reach a conclusion in reasonable runtime. R-AMDP agents
achieve greater focus in their construction of abstract mod-
els.

The experiment with the learned hierarchy shows the ben-
efit of a learned AMDP structure over an expert-designed



one. While our expert hierarchy gives all possible parame-
terizations of the child tasks, the learned structure only in-
cludes subtasks that have been observed to be beneficial to
the current task’s goal. That is, while both hierarchies con-
tain tasks with their unknown rewards and transitions ap-
proximated via exploration, the tasks learned via HierGen
are parameterizations that offer greater reuse by parent tasks.
This property means some execution paths down the hier-
archy are shorter and more efficient in how tasks are used
in specific contexts. For example, the generated hierarchy
contains a NAVIGATE task node parameterized by coordi-
nates, rather than a specific depot. The hierarchical policies
for solving the PUT task are done more directly, first by nav-
igating to the coordinates of the target depot, then recursing
back to ROOT by dropping off the passenger and terminat-
ing. Because it had a reduced number of tasks available at
any one time, this agent has to learn fewer R-MAX models
compared to the expert hierarchy, resulting in less unnec-
essary exploration at all nodes in the AMDP hierarchy and
more cumulative reward collected in each trial. Essentially,
it is a condensed hierarchy of minimal task nodes, organized
to minimally represent the target task.

Future Work
R-AMDP extends the AMDP planning framework by re-
moving the need to hand-design the models of AMDPs, even
in hierarchies derived from task graphs learned from data.
The state spaces are defined by MAXQ feature relevance as
subsets of the original state space. AMDPs are more power-
ful than a MAXQ hierarchy because AMDPs in a hierarchy
are independent of the other AMDPs in the structure. There-
fore, the state spaces can be defined by a more advanced
state abstraction technique than MAXQ irrelevance. The hi-
erarchy learning process exploits this property by creating
state spaces with unique attributes that achieve better per-
formance.

HierGen creates a single hierarchical structure from mul-
tiple training trajectories. If there is an inaccuracy in the final
structure, the R-AMDP agent has no way to improve the hi-
erarchy. One solution to avoid this rigidity is to pick the best
candidate structure from a collection of hierarchies proposed
by HierGen. By scoring each hierarchy using a set of metrics
related to performance and computational resources, all hi-
erarchies could be ordered and the best structure become the
AMDP. Additionally, when constructing a hierarchy, Hier-
Gen does not differentiate between causative attributes and
correlated attributes. One could view this issue as analogous
to the development of superstitions in humans: if one always
performs better when wearing a “lucky” shirt, one might at-
tribute the performance to the wearing of the shirt and not to
the factors that directly cause the increase in performance.

We selected R-MAX for this research to more fairly com-
pare performance with the existing baseline, R-MAXQ; we
intend to explore alternate algorithms.

Conclusion
R-AMDP demonstrates the viability of a model-based ap-
proach on the AMDP framework for hierarchical planning,

where totally abstract models are learned from experience
gained and propagated across the abstract level itself. In
particular, R-AMDP allows an agent to learn the models
that best suit each task in a hierarchy of decision problems
learned from data, without requiring any human engineering
of reward structure or expert-defined transition dynamics, all
while maintaining the benefits of planning with AMDP hi-
erarchies. We have deployed an existing structure-learning
method, HierGen, to autonomously produce a task graph
that, when converted to an AMDP hierarchy, yields a more
compact representation with higher performance. In combi-
nation with R-AMDP, this work introduces a complete top-
down, stochastic, hierarchical planning framework in which
the models are learned bottom-up from data.
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