
Characterizing MDP Abstraction Space

David Abel

This is a work in progress, please don’t distribute without talking to Dave (david abel@brown.edu)

Contents

1 Preliminaries 2
1.1 MDP Abstractions . 3

1.1.1 RL with Abstractions . 3
1.1.2 Planning with Abstractions . 4

1.2 Partial Abstractions . 4
1.2.1 Ordering Partial Abstractions . 5
1.2.2 Alignment & Equivalence . 6
1.2.3 Summary . 7

2 State Abstraction 8

3 Action Abstraction 9

4 Results 11
4.1 Main Results . 13
4.2 AA 6� SA+ w . 15
4.3 SA� AA . 16
4.4 Summary . 17

5 Evaluation 18

6 Compression 19

Acknowledgements: I am grateful to the following people for many insights and discussions that
underly this work: Dilip Arumugam, Kavosh Asadi, Akshay Balsubramani, Nakul Gopalan, Ellis
Hershkowitz, George Konidaris, Lucas Lehnert, Michael Littman, Elizabeth Thiry, Stefanie Tellex,
Carl Trimbach, and Lawson Wong.

1

1 Preliminaries

Through abstraction, agents form general yet concise representations of their surroundings, afford-
ing meaningful inference in diverse and complex environments. Such a tool is an essential ingredient
of intelligent behavior.

Abstraction and Reinforcement Learning (RL) are natural companions; algorithms for such a broad
learning paradigm naturally benefit from a core tool of intelligence. Consequently, the role of ab-
straction in RL has been a central focus of prior work [2, 11, 15, 10, 19, 7, 4, 9, 21, 1, 3, 13, 5, 6,
8, 12, 10, 15, 17, 18].

The goal of this document is to better understand the space of abstractions in the context of the
computational learning paradigm of RL. What makes an effective abstraction? Why? What is the
relationship between a representation’s generality (how many environments it’s useful for) with its
accuracy (how much information does it preserve)?

We offer the following contributions:

• Introduce definitions for Abstractions, Partial Abstractions, State Abstractions (SA), Action
Abstractions (AA), Abstraction Equivalence, and Abstraction Alignment.

• Invoke an ordering on Partial Abstractions.

• Prove that State and Action Abstractions are both Partial Abstractions and can be be made
into an Abstraction.

• Prove that State and Action Abstractions are aligned, in the sense that they can always form
the same total abstraction.

• Prove the power of different complements to State and Action Abstractions.

• Provide formal methods for evaluating partial abstractions. (forthcoming)

• Present a metric for quantifying the compressibility of partial and full abstractions. (forth-
coming)

We use Markov Decision Processes (MDPs) as the central model of environments in this work.
Naturally, removing the Markov assumption offers more generality but less tractability; such ex-
tensions are of interest in future work. For an overview of MDPs, see Puterman [20].

One point on notation: throughout this document we will use ©G to denote objects belonging to
a ground MDP (the true environmental MDP) and underscore ©A to refer to objects belonging to
an abstracted MDP (the agent’s model of the environment).

We begin by introducing core definitions.

2

1.1 MDP Abstractions

Let M denote the space of all MDPs. Consider a fixed MDP MG = 〈SG,AG,RG, TG, γG〉 ∈ M.

An RL agent interacts with MG via the repetition of the following two steps:

(1) The agent receives a state, s ∈ SG and reward, r ∈ [0, 1] from MG.

(2) The agent outputs an action, a ∈ AG, which is executed in the MDP.

The RL agent’s goal is to maximize expected discounted reward.

A planning agent is given the full description of MG, and possibly some distribution on start states,
s0 ∼ Pr(SG) and computes a policy, πG : SG 7→ AG. Again, the goal of planning is to compute a
πG that maximizes expected discounted reward.

We now introduce the central definition: an MDP Abstraction. Intuitively, an MDP abstraction
is a method for creating a model of an environment. Later we’ll evaluate the efficacy of these
abstractions by investigating the degree to which their induced models enable effective decision
making in the true environment.

Definition 1 (MDP Abstraction): An MDP abstraction is a function, ∆ : M 7→ M,
that takes as input an MG and outputs an MDP, MA = 〈SA,AA,RA, TA, γA〉 ∈ M such that
conversion between the two MDPs’ main objects (states and actions) is well defined. That is,
there exist two maps:

1. A map from ground to abstract states: SG 7→ SA.

2. A map from abstract actions to ground actions: AA 7→ AG
And the resulting abstraction transitions and rewards are well formed in the sense that:

RA : SA ×AA 7→ [0, 1]

And for each abstract action, aA, and pair of abstract states sA and s′A:

TA(sA, aA, s
′
A) = Pr(s′A | sA, aA)

This definition accounts for applications of abstraction to both planning and Reinforcement Learn-
ing, though we pay special attention to Reinforcement Learning. For brevity, we will use the term
“abstraction” to refer to MDP abstractions throughout the document.

1.1.1 RL with Abstractions

In the context of Reinforcement Learning, the two mappings accompanying the abstraction are
used to convert the agent’s interactions with the true ground MDP MG into interactions with the
abstract MDP MA. The intuition is that the agent is able to maintain it’s expected input/output
interface with it’s environment, pictured in Figure 1.

3

Agent

!

aA 2 AA

World

r

sG 2 SG aG 2 AG

'

sG

sA 2 SA

sG

Figure 1: Abstractions and Reinforcement Learning

1.1.2 Planning with Abstractions

The solution to the planning problem given an MDP MG is a policy, π : SG 7→ AG. Using an
abstraction, we instead compute MA = ∆(MG), which poses a new planning problem: compute a
policy for MA. Given the means to translate between states and actions in the ground an abstract
MDP, a policy for MA, πA, may be used to compute a policy1 for MG as follows:

∀sG∈SG : πG(sG) , ω (πA (ϕ(sG))) (1)

Where ω takes as input an abstract action, aA = πA (ϕ(sG)) and maps it to a ground action, aG.
As we will see, this action mapping will also need to take sG as input.

1.2 Partial Abstractions

Given above definition of an MDP abstraction, we now turn to a complementary notion: that of
a partial abstraction. Intuitively, a partial abstraction, denoted ρ, is a function which, along with
some other partial abstraction, creates an MDP abstraction:

Definition 2 (Partial MDP Abstraction): A partial MDP abstraction, ρ1, is a non-empty
set of functions which satisfies the following two properties:

1. ρ1 is not an MDP abstraction.

2. Pairing ρ1 with a non-empty set, ρ2, defines an MDP abstraction.

For instance, consider a function that computes an abstract action space, given MG. We need
some way to inform an abstract state space, transition function, reward function, and γ. We
introduce some terminology for the process of pairing a partial abstraction with its complementary
constituents:

1Though of course, under a bad abstraction, this policy may be completely useless in MG

4

Definition 3 (Completing a Partial Abstraction): For any two non-empty sets of functions,
ρ1 and ρ2, if ρ1 ∪ ρ2 defines an MDP abstraction, we call the process of joining ρ1 with ρ2
completing the partial abstraction, ρ1.

We will later see that, on their own, state and action abstractions are simply partial abstractions,
in the sense that we also need instructions on how to form TA, RA, and γ. There are standard
methods for completing both state and action abstractions, but here we instead consider all possible
methods of completing these partial abstractions.

In light of the terminology of a partial abstraction, we will occasionally use the term full or complete
abstraction to contrast an MDP abstraction from any partial counterparts.

1.2.1 Ordering Partial Abstractions

Consider the five different components of an MDP, displayed in Figure 2. For a partial abstraction
to be completed, we need some method for computing all five of these components.

SG AG RG TG �G

SA AA RA TA �A

x y z!'

Figure 2: The Different Components of Abstraction

We now impose an ordering on partial abstractions based on the number of components defined by
the partial abstraction:

Definition 4 (Level k MDP Abstraction): A partial abstraction, ρ, is said to be a level k
abstraction, denoted ρ ∈ Lk, if it computes exactly k of the components of the abstract MDP.
That is, if ρ ∈ Lk, ρ 6∈ Lk−1.

In principle, it is possible to have levels L1 through L5, where Li indicates that i of the 5 compo-
nents of MA are defined. Note that partial abstractions are any of L1 through L4. However, for
abstraction purposes, γA provides no attractive insights, so we focus on the four primary entities of
an MDP, S,A,R, T . Therefore, any abstraction at L4 is effectively a complete MDP abstraction,
while any abstraction at L1, L2 or L3 is a partial abstraction.

5

Since RA and TA are functions of abstract states and abstract actions, the only partial abstractions
that inform one or two components of the abstract MDP (L1 or L2 partial abstractions) are those
that inform SA and AA. Thus, L1 and L2 are rather simple:

Level Components of MA Defined

L1 SA xor AA
L2 SA,AA
L3 (SA,AA,RA) xor (SA,AA, TA)
L4 (SA,AA,RA, TA)

We use the terminology f ∈ L1 to denote that the partial abstraction defined by the function f is
a member of L1.

Ultimately, we will see that state and action abstractions are typically posed as complete abstrac-
tions, but there is an advantage to reducing them to their core. Namely, we can better evaluate
the degrees of freedom associated with the partial abstraction, and establish concretely the sense
in which the abstractions are equivalent.

We now turn to precisely this question: when are two abstractions equivalent? When are two
partial abstractions similar or equivalent?

1.2.2 Alignment & Equivalence

Definition 5 (Equivalent Abstractions): We say that two abstractions, ∆1 and ∆2, are equiv-
alent if, for all MDPs M ∈ M, ∆1(M) = ∆2(M). That is, the abstractions induce the same
abstract state-action space, transition function, reward function, and γ.

With partial abstractions we have a weaker notion, that of alignment, which states that there is
some way to complete each of the two partial abstractions to make them the same (but the means
of completion could be different):

Definition 6 (Aligned Partial Abstractions): Two partial abstractions, ρ1 and ρ2, are said
to be aligned, denoted ρ1
 ρ2, if, for any completion of ρ1, denoted as C1, there exists a
completion of ρ2, denoted as C2, such that ρ1 ∪ C1 = ρ ∪ C2. That is, the full abstractions
induced by ∆1 = ρ1 ∪ C1 and ∆2 = ρ2 ∪ C2 are equivalent.

As we will see, it is not always the case that the alignment operator is symmetric. That is, there
are cases where ρ1 � ρ2, but ρ2 6� ρ1. Intuitively, the completions of ρ1 may only correspond to a
small subset of completions of ρ2.

We also have a strong notion of equivalence, though as we will see, alignment is the piece we care
about:

6

Definition 7 (Equivalent Partial Abstractions): Two partial abstractions, ρ1 and ρ2, are
equivalent if they are aligned, and for all completions of ρ1, C1, using this to complete ρ2
results in an equivalent abstraction: ∆1 = ∆2 = ρ1 ∪ C1 = ρ2 ∪ C1

1.2.3 Summary

We now have the relevant terminology on the table. In summary, we introduced:

• MDP Abstraction: a function that transforms the objects of any MDP to the objects of a
smaller MDP.

• Partial MDP Abstraction: a collection of functions which, when coupled with another partial
abstraction, forms an MDP abstraction.

• Level k MDP Abstraction: a level k abstraction, ρ ∈ Lk, implies that ρ can compute at most
k of the four relevant components of the abstract MDP.

• Equivalent MDP Abstractions: we say that two abstractions are equivalent if they always
induce the same abstract MDPs.

• Aligned Partial MDP Abstraction: two partial abstractions are aligned, ρ1
 ρ2, if there
is some (possibly different) method of completing each of them that induces two equivalent
abstractions.

• Equivalent Partial MDP Abstractions: we say two partial abstractions, ρ1 and ρ2 are equiv-
alent if, for a given completion of the first that results in abstraction ∆1, there exists a
completion of ρ2, ∆2 such that ∆1 = ∆2.

We now turn to one of the central question of this document:

Is there a sense in which state abstractions and action abstractions are equivalent?

7

2 State Abstraction

A popular approach to MDP abstraction is to compress the state space, S, by employing state
abstraction.

Definition 8 (State Abstraction): Given a ground MDP:

MG = 〈SG,AG, TG,RG, γG〉 (2)

A state abstraction is a function, ϕ : SG 7→ SA, where SA is some abstract state space such
that |SA| < |SG|. We let SA denote the space of all possible action abstractions.

The idea is to group states into clusters, where each cluster define a state in the abstract state space.
For instance, consider the following state abstraction that reduces a six state MDP (pictured on
the left) to three states in the abstract (pictured on the right):

Figure 3: State Abstraction: The ground MDP is pictured on the left, and on the right, the three
colored clusters define the abstract states.

Notice that a state abstraction only defines an abstract state space, but does not specify AA,RA, TA
or γA. Thus, it is a partial abstraction. Traditionally, state abstractions are accompanied by a
weighting function, w : SG 7→ [0, 1], that dictates the abstract transition and reward function. The
weighting function must satisfy:

∀sA∈SA :

 ∑
sG∈ϕ−1(sA)

w(sG)

 = 1

As we will see, however, there are other possible completions of the partial abstraction defined by
ϕ that are more powerful.

8

3 Action Abstraction

An alternative strategy is to perform abstraction at the level of actions. The most common for-
malism is an Option, introduced by Sutton et al. [21].

Definition 9 (Option): Given a ground MDP, MG = 〈SG,AG, TG,RG, γG〉, an Option is a
triple, 〈I, β, π〉, where:

• I : SG 7→ {0, 1}: we call the initiation condition. Denotes a predicate on states, indicating
in which state the Option may be initiated.

• β : SG 7→ [0, 1]: we call the termination condition. Assigns a Bernoulli to every state,
denoting the likelihood of termination in each state. That is, if the MDP transitions to
state sG, the option terminates with probability β(s).

• π : SG 7→ AG: Denotes a policy.

That is, an option, o, augments a given action space AG to form AA = AG ∪ {o}.

An agent planning or learning with AA may only execute an option o in states where o.I(s) = 1.
Then, the agent deterministically follows the policy o.π until reaching any state s′G such that
x ∼ o.β(s′G) = 1.

Critically, we only allow for initiation conditions, termination conditions, and policies that are
functions of state, and not of time-step. For instance, an option that always terminates after four
time steps, while reasonable, is not captured by this definition. We leave considerations of this sort
for future work. Here, we define a non-empty set of options to be an action abstraction:

Definition 10 (Action Abstraction): Given a ground MDP MG, a set of options, ω =
〈o1, . . . , o`〉, for ` ≥ 2, defines an action abstraction when it replaces the action space of
primitive actions. We let AA denote the space of all possible action abstractions.a

aWe insist that ` ≥ 2, since if there is only one abstract action, the abstract MDP reduces to a Markov Chain
and the agent no longer makes any decisions.

A central result from Sutton et al. [21] is as follows:

Theorem [21]: Augmenting an MDP’s action space with a set of options results in a Semi-
Markov Decision Process (MDP + Options = SMDP). That is:

MS = 〈SG,AG ∪ ω,RG,ω, TG,ω, γ〉 (3)

Where RG,ω and TG,ω denote the reward and transition functions determined by the multi-time
model outlined in Sutton et al. [21].

We will present an analogous result: any action abstraction is a partial abstraction, and with a
trivial completion (the multi-time model and a natural state aggregation), is an MDP abstraction.

9

That is, replacing a MDP’s action space with a set of options, and using the multi-time model,
results in a new MDP (not an SMDP).

We now introduce an important modeling concept related to Action Abstractions: the option
template.

Definition 11 (Option Template): An option template, denoted τ is a precondition for an
option:

〈I,�,�〉 (4)

An option template isolates a subset of the space of all possible options - namely, those that are
only executable in some states, but may have different termination conditions and policies.

As we will see in the next section, option templates and state abstraction are nearly identical.

10

4 Results

We first show that our ordering on partial abstractions also orders the space of partial abstractions
by size:

Remark: |L1| ≤ |L2| ≤ |L3| ≤ |L4|, where |Lx| denotes how many unique partial abstractions
are members of Lx.

Proof.

For any choice of k and j such that k < j, let ρk and ρj denote partial abstractions belonging
to Lk and Lj respectively.

Observe that for any value of k, there will always exist at least one valid completion of ρk:

(k =1) Note that ρ1 must define either SA or AA (but not both)

First suppose the former (SA). Then let AA = {aA} with mapping ω(aA) = aG,1 ∈
AG, and consider the trivial abstract deterministic transition function:

∀sA∈SA : TA(sA, aA, sA) = 1

Where RA and γA can be defined arbitrarily.

Now suppose the latter (AA). Then let SA = SG, and consider the trivial transition
function:

∀sA∈SA : TA(sA, aA, sA) = 1

where aA is a fixed but arbitrary abstract action. Again, RA and γA can be defined
arbitrarily.

(k =2) Now ρ2 must define SA and AA. We find trivial completions by similar reasoning to
the k = 1 cases.

(k =3) ρ3 defines either (SA,AA,RA) or (SA,AA, TA), but not both. In the former cases,
we can again define a trivial transition model, and in the latter, we can again define
a trivial reward function. Any γA ∈ (0, 1) will do.

Therefore, for k < j, for any ρk ∈ Lk there is at least one ρj ∈ Lj (though clearly
there are many more). Thus, |L1| ≤ |L2| ≤ |L3| ≤ |L4|.

With this ordering in mind, we now turn our attention to state abstractions and action abstractions.

11

Remark: Any state abstraction function is a partial abstraction of L1, and can be trivially
be completed.

Proof.

Consider a state abstraction, ϕ. For a given MDP, MG, we compute an abstract state space
as follows:

SA = ∪s∈SGϕ(s) (5)

Further, ϕ does not compute AA,RA or TA, and so ϕ ∈ L1.

To complete ϕ, we need to identify a set of functions which, together with ϕ, form an MDP
abstraction. That is, we need to define well formed AA,RA, and TA, and the following two
criteria need to be satisfied:

1. We can map ground states to abstract states.

2. We can map abstract actions to ground actions.

The state abstraction ϕ already satisfies the first criteria.

To satisfy the second criteria, we need a mapping from abstract actions to ground actions
that induce a well formed abstraction transition and reward function. In this sense, we have
a huge degree of freedom: there exist many possible action abstractions we could adjoin to
ϕ that lead to a valid abstract MDP.

The identity function satisfies the needed criteria - that is, the abstract action space is iden-
tical to the ground: AA = AG

Then, constructing TA and RA is done per the procedure outlined by Li et al. [16] and Abel
et al. [1], which also depends on the choice of a weighting scheme:

R(sA, a) =
∑

sG∈ϕ−1(sA)

R(sG, a) · w(sG)

T (sA, a, s
′
A) =

∑
sG∈ϕ−1(sA)

∑
s′G∈ϕ−1(s′A)

T (sG, a, s
′
G) · w(sG)

Where:

∀sA∈SA :

 ∑
sG∈ϕ−1(sA)

w(sG)

 = 1

∀sG∈SG : 0 ≤ w(sG) ≤ 1

Thus, ϕ can be completed by the identity action map and any weighting function, w.

12

Remark: Any action abstraction is a partial abstraction, and can be completed.

Proof.

Consider a ground MDP, MG and an action abstraction, ω. Letting AA = ω, we observe
that ω is a partial abstraction, and ω ∈ L1.

To complete ω, we need to define SA, TA,RA, in a way that satisfies the two mapping criteria.
Again we note a degree of freedom.

First, note that ω satisfies the action mapping: at any time step, a ground state paired with
an activea option produces a ground action via the option’s policy, o.π(sG) 7→ sA.

To satisfy the state mapping criteria, we note a further degree of freedom. Here, however,
our abstraction action space imposes a constraint: the abstract state space must be sufficient
for distinguishing when option’s are active, otherwise we destroy the action mapping from
abstract to ground. One trivial valid option is to again use an identity map: ϕ(sG) = sG,
so SA = SG. Choosing the identity maps lets each option’s constituent functions apply to
abstract states, too.

The transition functions and reward functions may be defined identically to the multi-time
model from Sutton et al. [21] and Jong and Stone [12].

Consequently, we have constructed a function which, given MG, outputs MA, such that there
are two mappings, ϕ and ω, and TA and RA are well defined.b

aWe’re executing the option’s policy or we’re choosing amongst option’s whose initiation condition is True.
bWe also require that γA be a bit different - handled similarly to [21].

One might wonder whether these completions of a state abstraction or action abstraction are unique;
are there other possible completions? If there are many, how should we choose amongst them? Why
use the weighting function or multi-time model?

4.1 Main Results

In this section, we’ll show that SA
 AA: that State Abstractions and Action Abstractions are
aligned. More specifically, for any ϕ and ω, there exists a completion of ϕ Cϕ that produces the
abstraction ∆ϕ and vice versa. However, the method for completing the state abstraction must be
different than the weighting function discussed above. If a weighting function is used, then there
are action abstractions that have no aligned state abstraction.

We first show that action abstractions can be converted from L1 to L2, in a result heavily aligned
with the results of Konidaris et al. [14].

13

Remark: Any action abstraction, ω, induces a particular state abstraction ϕω, so ω∪ϕω ∈ L2.
Further, this state abstraction results in the smallest abstract state space that is capable of
representing option availability.

Proof.

Given a ground MDP, MG and an action abstraction, ω.

Consider the bit string obtained by concatenating the n uniquea initiation condition’s of the
set of ` options (n ≤ `), applied to a ground state:

ϕ(sG) = I1(sG) ◦ I2(sG) ◦ . . . ◦ In(sG) (6)

Then each ground state is grouped into an abstract state according to which relevant ini-
tiation conditions are active in that ground state. Now, a binary string corresponds to an
abstract state (for at most 2|ω| abstract states), producing a mapping from ground states to
abstract states.

Further, this abstract state space is the smallest state space sufficient for representing when
each option is available.

Suppose this is not the case: then there exists an abstract state space smaller than the one
defined by Equation 6. Call this Ssmall.

Recall that by definition of an Action Abstraction, |ω| ≥ 2. Then by the pigeonhole principle,
there exists an abstract state s̃ in Ssmall such that two ground states sa and sb map to s̃,
but have different initiation condition’s active. That is:

I1(sa) ◦ . . . ◦ In(sa) 6= I1(sb) ◦ . . . ◦ In(sb) (7)

Then, when the agent is in the abstract state s̃, there is no well formed action mapping that
preserves which options are active.b

aTwo initiation conditions are equivalent if their output agrees for all states in the MDP
bOne could assume that in this situation the agent checks its true ground state, and determines abstract

action availability accordingly. However, this is suspiciously similar to augmenting the abstract state space
to retain this information.

Remark: Any set of option templates, τ = {τ1, . . . , τ`}, is an L1 abstraction. Further, there
exists a state abstraction ϕ that is equivalent to the templates.

Proof.

The above method for inducing a state abstraction from a set of options only depends on
the initiation conditions. Thus, any set of options with the same initiation conditions forms

14

the same abstract state space, which could be analogously defined by ϕ. Therefore, τ ∈ L1,
and any completion of ϕ will also complete τ and vice versa.

Corollary: Consequently, if assigning β and π to each of the templates defines TA and RA,
this set of β’s and π’s also deifnes TA and RA for ϕ.

Remark: Any state abstraction induces a set of option templates.

Proof.

Consider the state abstraction ϕ, which maps each state in SG to SA. Then the set SA forms
a set of candidate initiation conditions and termination conditions. That is we create an
initiation condition Ii for each abstract state sA,i such that:

∀sG∈SG : Ii(sG) ≡ (ϕ(sG) = sA,i) (8)

We denote this set of initiation conditions, Ī =
{
I1, . . . , I|SA|

}
.

Let each τ then be defined as any pairs of the conditions (a, b) ∈ Ī × Ī. That is, each initial
condition and terminal condition pair, 〈Ii, Ij〉 defines an option template, which effectively
states “activate if the agent starts in abstract state sA,i, and terminate if the agent ends in
abstract state sA,j”. Each possible combination defines the set of option templates (every
possible edge between every abstract state).

4.2 AA 6� SA+ w

Consider a set of option templates, τ = {τ1, . . . , τ`}. For any completion of the templates, we get
the same abstract state space. However, the resulting abstractions induce different transition and
reward functions. Similarly, for a state abstraction, different weighting schemes induce different
abstract transitions and rewards. We now show that these traditional methods for completing State
and Action abstractions are not aligned.

Remark: For a given set of ` option templates, τ and their corresponding state abstraction,
ϕτ , there exist termination conditions and policies π1, π2, . . . , π` that will generate an TA and
RA for which no weighting schema, coupled with ϕτ , can create.

Proof.

Consider a ground MDP with three ground states, s1, s2, s3. Suppose s1 and s2 are grouped
into the same abstract state, while s3 becomes its own abstract state. That is, ϕ(s1) =
ϕ(s2) 6= ϕ(s3):

15

s1

s2 s3

0.5

0.5

0.5

0.5
1.0

Where the numbers along the edges denote transition probability for action a1 (we may as-
sume other actions exist, but are not needed for the counter example).

Consider the following option:

I(s) = 1

β(s) =

{
1 s = s3

0 o/w

π(s) = a1

That is, the option always executes a1 (pictured by the dotted lines). and terminates when
the agent arrives in s3.

Suppose there is only one action in the ground MDP, a1, with transitions as follows:

TG(si, a1, sj) = i

j 0 1/2 1/2
1/2 0 1/2
0 0 1

Then any weighting function, w, will assign positive probability to the transition TA(s1, a1, s2).
But this is not the case for the above option, which may set that probability to be zero.

4.3 SA� AA

Now we consider the converse:

Remark: Consider any state abstraction along with a completing weighting function, ϕ ∪
w, and the set of option templates analogous to ϕ, denoted τ . We can assign termination
conditions and policies to the templates such that the two abstractions are equivalent:

ϕ ∪ w = τ ∪ β ∪ π (9)

Proof.

16

Given arbitrary ϕ∪w and τ , we assign a β and π to each 〈I,�,�〉 that induces the equivalent
MDP abstractions as follows:

TODO: Finish this proof...

4.4 Summary

We summarize the above remarks in our main result:

Main Result: The space of state abstractions, SA, and action abstractions, AA, have the
following properties:

1. All ϕ ∈ SA are L1 abstractions, along with their analogous option templates.

2. Without further instruction, all ω ∈ AA are L1 abstractions. However, if specified, any
ω can induce SA, too, and so ω ∪ Iω is an L2 abstraction.

3. SA� AA: Any ϕ ∈ SA has an aligned ω ∈ AA, and any ω ∈ AA has an aligned ϕ ∈ SA.

4. Weighting functions are less powerful than options: any ϕ completed by a weighting
function w has an aligned ω ∈ AA, but for some ω ∈ AA, there is not an aligned ϕ ∪ w.

5. Option templates induce the smallest possible state abstraction that preserve a well
formed action mapping.

17

5 Evaluation

We now turn to the question of evaluating abstractions. In particular, we seek the answer to three
questions:

1. Given a state abstraction or set of initiation conditions, which set of initiation conditions/policies
π maximizes performance on the abstract MDP?

2. Given a set of policies, which state abstraction or option templates maximizes performance
on the abstract MDP?

3. Given the ground MDP, which abstraction maximizes performance on the MDP?

TODO: Focusing on this presently

18

6 Compression

Since SA ⊂ AA, talking about the compression achieved by any aa ∈ AA is sufficiently general.

We capture the compression achieved by an abstraction as the reduction in the entropy rate of the
stochastic Markov Chain induced by a fixed policy:

Definition 12 (Entropy Rate of a Markov Chain): The Entropy Rate of a Markov Chain,
S = X1, . . . , Xn is given as:

H(S) = lim
n→∞

1

n
H(X1, . . . , Xn) (10)

Which is equivalent to:

H(S) = lim
n→∞

1

n
H(Xn | Xn−1) (11)

For a fixed policy, the MDP M collapses to a Markov Chain S with transition matrix dictated by
π, sinit ∈ S, and T .

So how can we capture the entropy of the MDP, given that there are arbitrarily many policies that
could be chosen?

TODO: We should really be doing this from a rate-distortion theory perspective, not Entropy
Rates. TODO: Also focusing on this presently

19

References

[1] David Abel, D Ellis Hershkowitz, and Michael L. Littman. Near optimal behavior via ap-
proximate state abstraction. In Proceedings of The 33rd International Conference on Machine
Learning, 2016.

[2] David Andre and Stuart J Russell. State abstraction for programmable reinforcement learning
agents. In AAAI/IAAI, pages 119–125, 2002.

[3] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[4] James C Bean, John R Birge, and Robert L Smith. Dynamic programming aggregation.
Operations Research, 35(2):215–220, 2011.

[5] F Cao and Soumya Ray. Bayesian hierarchical reinforcement learning. Advances in Neural
Information Processing Systems, pages 73–81, 2012.

[6] Peter Dayan and Geoffrey Hinton. Feudal Reinforcement Learning. Advances in neural infor-
mation processing systems, pages 271–278, 1993.

[7] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[8] Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and expressivity.
In AAAI, volume 94, pages 1123–1128, 1994.

[9] Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier.
Hierarchical solution of markov decision processes using macro-actions. In Proceedings of
the Fourteenth conference on Uncertainty in artificial intelligence, pages 220–229. Morgan
Kaufmann Publishers Inc., 1998.

[10] Bernhard Hengst. Discovering hierarchy in reinforcement learning with HEXQ. Icml, (1):
243–250, 2002.

[11] Nicholas K Jong and Peter Stone. State abstraction discovery from irrelevant state variables.
In IJCAI, pages 752–757, 2005.

[12] Nicholas K. Jong and Peter Stone. Hierarchical model-based reinforcement learning. Proceed-
ings of the 25th international conference on Machine learning - ICML ’08, pages 432–439,
2008.

[13] George Konidaris. Constructing abstraction hierarchies using a skill-symbol loop. arXiv
preprint arXiv:1509.07582, 2015.

[14] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Constructing symbolic
representations for high-level planning. 2014.

[15] Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. Hier-
archical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Moti-
vation. ArXiv, pages 1–13, 2016.

20

[16] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state
abstraction for mdps. In ISAIM, 2006.

[17] Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas G. Dietterich. Automatic Dis-
covery and Transfer of Task Hierarchies in Reinforcement Learning. AI Magazine, 32(1):35,
2011.

[18] Ronald Parr. Hierarchical control and learning for Markov decision processes. 1998.

[19] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances
in neural information processing systems, pages 1043–1049, 1998.

[20] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[21] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):
181–211, 1999.

21

