A Two-Stream Light Graph Convolution Network-
based Latent Factor Model for Accurate
Cloud Service QoS Estimation

Abstract—Historical Quality-of-Service (QoS) data regarding
past user-service invocations are vital to understand the user
behaviors and cloud service conditions. A matrix factorization
(MF)-based collaborative filtering (CF) model has proven to be
highly effective in performing representation learning to such
QoS data. However, its performance is hindered by its linear
interaction and implicit encoding of collaborative QoS signal. To
address this critical issue, this paper presents a Two-stream
Light Graph Convolution Network-based latent factor (TLGCN)
model with the three-fold ideas: 1) constructing a multilayered
and fully-connected network to represent services’ nonlinear
latent features; 2) integrating the user-service interactions, i.e.,
the bipartite graph structure into the representation learning
process with a light graph convolution network for illustrating
the high-order connectivity information in QoS data; and 3)
incorporating the data density-oriented modeling mechanism
into the input and output of TLGCN for high computational
efficiency. Experimental results on two real QoS datasets
demonstrate that the proposed TLGCN model significantly
outperforms its state-of-the-art peers in both estimation accuracy
for missing QoS data and computational efficiency.

Keywords—Quality-of-Service, Representation Learning, Data
Science, Cloud Service, Missing Data Estimation, Graph Neural
Network, Non-Euclidean Data.

I. INTRODUCTION

In industrial software applications based on service-
oriented architectures [1-3], cloud services are taken as the
fundamental components to achieve easy exchange of data
among them over the World Wide Web. With this era of cloud
computing, more and more service providers serve their
customers by deploying cloud services, i.e., the number of
online cloud services are explosively increasing [4-6]. And
owing to the highly similar functionality of available candidate
cloud services, it becomes a vital challenge for users to select
appropriate ones and build a reliable system [7, 8].

Most nonfunctional characteristics of cloud services can be
reflected by Quality-of-Service (QoS) data at both server and
user sides [9-13], which is critical to service selection. Server-
side QoS data, e.g., popularity and price, can be directly

provided by service providers. On the other hand, user-side
data, e.g., response time and throughput, vary greatly among
different users depending on many factors [13-15], e.g.,
invoking environment. Warming-up tests is a straightforward
approach to retrieve user-side QoS data by actually invoking
each cloud service [1-3]. However, owing to the large number
of candidate cloud services and charged commercial service
invocations in most cases, to perform such warming-up tests is
very time-consuming and expensive thereby impractical.

Motivated by the success of collaborative filtering (CF) in
e-commerce, researchers employ this technique to implement
QoS estimation aiming at efficiently and accurately estimating
missing QoS data based on historical ones [16-24]. A CF-based
QoS estimator works on a given user-service QoS matrix,
where the information of users, cloud services and their
corresponding invocations are recorded in its rows, columns
and entries, respectively. In real-world scenarios, the target
QoS matrix is highly sparse owing to the fact that a user
typically experiences just a very limited number of candidate
cloud services [1-3, 16]. Hence, how to perform efficient and
accurate representation learning based on such a highly sparse
user-service matrix is the major problem of CF-based QoS
estimation.

Among various CF-based QoS estimators, a matrix
factorization (MF)-based latent factor analysis (LFA) model
has proven to be effective in performing representation
learning to QoS data [16, 20-28]. It works by mapping both
users and services into a low-rank latent feature space to
extract their latent features based on the known entries in a
target user-service QoS matrix, and then perform inner
products of corresponding latent features of users and cloud
services to obtain the missing entries. Zhu et al. [20]
incorporate a similarity-maintaining privacy preservation
strategy into their location-aware low-rank matrix factorization
model to achieve reliable and accurate QoS estimation. Luo et
al. [25] adopt the principle of alternating direction method and
ensemble mechanism to build an effective matrix factorization-
based QoS estimator. Yang et al. [27] consider the correlation
between users and services, i.e., incorporate their neighborhood
information into the factorization process for accurate QoS
estimation. Ryu et al. [23] propose a matrix factorization-based
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Fig. 1. An illustrative example of the attribute characteristics (e.g., response
time and throughput) and high-order connectivity information in a user-
service interaction graph.

preference propagation approach to use the fused invocation
and neighborhood similarity information for addressing the
cold start problem in QoS estimation. Wu et al. [28] propose a
density peaks-based clustering method to detect the
neighborhood and noises of QoS data for achieving a data-
characteristic-aware QoS estimator.

Despite their effectiveness, existing matrix factorization-
based LFA methods possess inherent deficiencies. As depicted
in Fig. 1, the user-service interaction graph contains the
attribute characteristics of users/services and high-order
connectivity information. MF-based LFA models adopt inner
product to combine the multiplication of the latent feature
vectors of users and services, whose linear nature limits to fully
capture the implicit information in them. Apart from this, they
cannot well handle the non-Euclidean structure in QoS data,
ie.,, suffer the unavailability of leveraging the high-order
connectivity information, resulting in extremely sparse
collaborative QoS signals and inevitable accuracy loss.

Considering the great potential of graph convolutional
networks (GCNs) to address the non-Euclidean data in other
fields [28-32] and the unique attribute characteristics of user-
service QoS data, this paper presents a Two-stream Light
Graph Convolution Network-based latent factor analysis
(TLGCN) model to perform highly accurate and efficient
representation learning for QoS data with the following three-
fold fundamental ideas:

(1) Constructing a cloud service-oriented multilayered and
fully-connected network to learn high level of services’
nonlinear latent features;

(2) Integrating the user-service interactions, i.e., the bipartite
graph structure into the representation learning process with
a light graph convolution network for illustrating high-
order connectivity information;

(3) Incorporating the data density-oriented modeling principle
into the input and output of TLGCN for high computational
efficiency.

To summarize, this paper achieves the following main
contributions:

(1) Proposing a TLGCN model with high representation
learning ability for cloud service QoS data in both
estimation accuracy and computational efficiency;

(2) Conducting extensive empirical studies on two commonly-
adopted real QoS datasets to evaluate the TLGCN model.

To the best of our knowledge, the proposed TLGCN model

significantly outperforms its state-of-the-art peers in both

estimation accuracy for missing cloud service QoS data and
computational efficiency.

The remainder of this paper is organized as below. Section
II presents the preliminaries. Section III describes the TLGCN
model. Section IV gives the experimental results. In the end,
Section V concludes this paper.

II. PRELIMINARIES

Table I summarizes the adopted notations of this paper.
Note that a QoS matrix describing the relationship among user
set and service set is the fundamental input for an LFA-based
QoS estimator, which is defined as [9-13, 16-24]:

Definition 1. A QoS matrix. Given a user set U and a service
set S, 01U is a QoS matrix where each element ¢, describes
a QoS record of invocation by u€U on s€S.

Since a user usually invokes only a very limited number of

candidate cloud services, Q is incomplete. Let A and O denote
the known entry set and unknown one, an LFA-based QoS
estimator is defined as [16-24]:
Definition 2. An LFA-based QoS estimator. Given Q, an
LFA-based QoS estimator builds Q’s rank-F approximation Q
only based on A, generating an estimate ¢s. for specified s€S
and u€U such that Yy eA(¢su—¢su)? is minimized.

TABLE 1. SYMBOL APPOINTMENT
Symbol  Description
Us Concerned user and service sets.
0 An |S]%|U] QoS matrix between U and S.

A, O Known and unknown entry sets of Q.

F Latent feature space dimension.
0 QO’s rank-F approximation.
Gsu, s Single entries in Q and 0.
K Number of hidden layers of fully-connected network.
H |S|xD services’ nonlinear latent feature matrix in the A-th layer.
1, Single entries in H*.

Wk, Bf

s Weight matrix and bias vector of k-th hidden layer.
I3 3
Waps by

Single variables in #7* and B*.

(|UHS)*(JUIHS]) adjacency matrix of the user-service graph.
A’s degree matrix.

A’s symmetrically normalized matrix.

Number of propagation layers of light graph convolution.
(|UI+|S])*xD combined feature matrix of /-th convolution layer.
e, e Latent features of u and s in the /-th graph convolution layer.

SESENCIN

M, N Resultant latent feature matrices of users and services.
Ms.f, Nuf Single entries in M and N.
C Bias vector of the output layer.
Cu Single variables in C.
I Cardinality of the involved set.
a() k-th layer activation function.
& Loss function.
N(s), N(u) Neighborhood sets of s and u.
A(s), A(u)  Subsets of A related to each s and u in Q.
v Testing set from A.
o Weight of /-th graph convolution layer features in E.
) Hyper parameter controlling the importance of £ and H~.
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Fig. 2. The structure and flowchart of the proposed TLGCN model.

III. A TLGCN MODEL

In this section, we introduce the proposed TLGCN model,
which can be divided into User-oriented TLGCN (U-TLGCN)
and Service-oriented TLGCN (S-TLGCN). Note that they
enjoy the same structure and the only difference between them
is the former takes each user’s records regarding all invoked
cloud services as the input data, while the latter takes each
service’s invocation records as the input data. Hence, in this
paper, we mainly present the Service-oriented TLGCN model
for better readability and simplification, whose structure and
flowchart are illustrated in Fig. 2.

As shown in Fig. 2, TLGCN consists of the following three
main modules:

(a) The attribute characteristics extraction module receives the
input QoS matrix and adopts a fully-connected network to
acquire the nonlinear service representations;

(b) The high-order connectivity information extraction module
iteratively performs light graph convolution to learn smooth
representation for users and services on their interaction
graph;

(c) The prediction module performs estimation, e.g., inner
product, to obtain the unknown QoS data based on the
resultant combined latent features of users and services.

TLGCN’s detailed descriptions are as below.

A. Attribute Characteristics Extraction Module

We argue that by feeding the known invocation records in a
user-service QoS matrix, the target LFA model can learn more
accurate nonlinear representations for services. Hence, we
design the attribute characteristics extraction module and
incorporate the data density-oriented modeling mechanism into
it to accommodate the sparsity of QoS data. Fig. 2(a) illustrates

the whole architecture of it and Fig. 3 depicts the propagation
process of a specified service s, whose details are as below.

Input Layer. The input layer receives service-oriented
QoS data, i.e., a [S]x|U] QoS matrix Q regarded as the attribute
characteristics of services. As illustrated in Figs. 2(a) and 3, the
known data are marked with real numbers denoting the user-
service invocation records (e.g., throughput values) and the
remaining unknown ones are marked with question marks.
Since the real-world QoS data are mostly highly sparse, the
prior methods filling the unknown parts with artificial values,
e.g., zero values, are time-consuming and can cause accuracy
loss. Hence, following the data density-oriented principle,
TLGCN only activates the input layer nodes based on the
known user-service interactions to achieve high efficiency.

Hidden Layer. The attribute characteristics extraction
module achieves multiple fully-connected hidden layers to
learn high level of nonlinear latent features. As shown in Fig.
2(a), H* denotes the k-th layer latent feature matrix, W* and B
denote the corresponding weight matrix and bias vector in k-th
layer. Note that the k-th layer node count F* is set uniformly for
simplicity, i.e., F'=F?=---=FX=F. For the first layer, we present
the mapping formula as:

> (M

hsl,f = al qs,uwrl,f +blf >
) MEA(.\')

where gs.u, hyj, w,,and b; are the single entries in O, H', W' and
B', A(s) represents the known entry subset related to s, and a1(-)
indicates the first-layer activation function, which can be
hyperbolic tangent (tanh), sigmoid or Rectified Linear Unit
(ReLU), among others. Note that since |A(s)|<<|U], (2) reduces
the computational and storage cost greatly.
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For the (2~K)-th hidden layers, the computing process is
based on a fully-connected network, which is given as:

;
Wy =a [Zh§d1W§,f +bﬁ)» )

d=l1

where k., h';, i, and b; are the single entries in H¥, H*!, W*

and B* respectively, and ax(*) is the activation function.
Different activation functions are tested in our implementation,
and we find that uniformly adopting sigmoid for all layers
plays the best effect.

B. High-Order Connectivity Information Extraction Module

As discussed in [28-32], to explicitly exploit the high-order
connectivity information from user-service interaction graph
can acquire stronger collaborative QoS signal thereby
augmenting node representations. In recent years, graph
convolution networks become popular owing to their high
accuracy and scalability in capturing high-order connectivity
information, which work by iteratively performing message
passing to aggregate multi-hop neighborhood information.
When addressing non-Euclidean QoS data, its complete
message passing layer with self-connection is defined as:

EM = O'(ZATO'S/AIZATO'SEIW’ )’ 3)

where A=A+I and D=D+I. A is a (|UHS)*(|UHS]|) adjacency
matrix directly constructed from the bipartite user-service

interaction graph as:
az| O Qu 4
adj

where Qugis Q5 adjacency matrix. D is A’s diagonal degree
matrix, in which each entry D denotes the number of
invocation records regarding each user or service, i.e., the
nonzero entries in A’s i-th row vector. And / is the identity
matrix used to integrate the self-connections on nodes. E' and
W' denote the latent feature matrix and feature transformation
weight matrix of the /-th layer. o(-) is a nonlinear activation
function such as ReLU.

Despite GCN’s wide success in various graph learning fields,
several recent studies [29-32] argue that by appropriately
simplifying GCN, the performance on CF tasks can be further
boosted. Inspired by this, we design the high-order connectivity
information extraction module as depicted in Fig. 2(b) and
adopt the following message passing strategy in each layer:
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information for user . In light graph convolution, the feature transformation,
self-connection, and nonlinear activation are all removed, only the normalized
sum of neighborhood latent features are aggregated towards next layer, whose
simplified structure reduces training difficulty thereby achieving higher
estimation accuracy and efficiency compared with the complete one.

El+] :D70,5AD70,5E1. (5)

Note that compared with (3), (5) removes: 1) the feature
transformation, i.e., W'; 2) the nonlinear activation function, i.e.,
o(*); and 3) the self-connection, i.e., /. In this way, for each
specified user or service, the (/+1)-th layer latent feature can be
obtained by only aggregating the normalized sum of its
neighborhood features. Specifically, in (5), the light graph
convolution operations, i.e., the propagation rules for user u and
service s are defined as:
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in which N(u) and N(s) denote the directly-connected neighbor
node sets of u and s. It can avoid the feature scale increasing
with multiple graph convolution operations and assign different
importance to each neighbor for higher accuracy and diversity.
Fig. 4 illustrates the detailed propagation process of user u1 by
performing (6). After propagating L layers, we can obtain the
final representations by adopting the layer combination, i.e., the
weighted sum of the latent features propagated at each layer as:

(6)

where is the symmetric normalization form,

E=a,E' +a,E' +o,E* +---+a,E"

=a,E’ +a,AE® + , /E* +---+ o, A"E°,

(7

where 4 =D AD™ is A’s symmetrically normalized matrix;
020 denotes the importance of /-th layer features to constitute



the final representations, we set it uniformly as 1/(Z+1) here.
Note that (7) plays a similar effect to self-connection, and it can
alleviate the over-smoothing problem. In the whole propagation
process, E° is the only parameter matrix to optimize, which is
easy to train thereby gaining high efficiency and accuracy.

C. Prediction Module

For a QoS graph, the attribute characteristics and multi-
hop neighborhood information greatly enrich each node’s
representation. Hence, by performing attribute characteristics
extraction and light graph convolution, we address the data
sparsity problem to some extent and obtain complementary
latent features. After that, in the prediction module, the
services’ final latent features are combined as:

M = oE, +(1-w)H", (8)
where M is the final service feature matrix, and w denotes the
importance of Ei-s and HX in constituting the final latent
features, which is treated as a hyper parameter to be tuned
carefully. And we extract N from E as the resultant user latent
feature matrix, as shown in Fig. 2(c). Based on M and N,
TLGCN estimates the unknown entries in Q as:

F
és,u = z m.v,fnu,f + cu b (9)
7=

where ¢s.€Q is the estimation for each ¢su., and c.€C is the
bias for u to enlarge the solution space. And then as discussed
in Section II, we utilize the commonly-adopted Euclidean
distance-based objective function to optimize the variables as:

1

n 2
5:5 Z (qs,u —qg,u) s

950 €A

(10)

where A denotes the known entry set. And like the input layer
in the attribute characteristics extraction module, (10) follows
the data density-oriented modeling principle to optimize the
variables only on the known entries in Q. Note that the
combination and estimation strategies can be further extended
to boost the performance of TLGCN with different methods,
e.g., an attention-based neural network.

D. CUDA-Parallelized Sparse Matrix Computation

To address the high sparsity of QoS data, TLGCN adopts
the data-density oriented principle in its input and output parts,
i.e., only based on the known entry set without any data filling,
for avoiding time and storage consumption. However, existing
mainstream deep learning frameworks are immature in sparse
computing and they cannot absolutely support TLGCN’s
numerous sparse matrix operations in GPU. Hence, following
the previous studies [33, 34], an efficient CUDA -parallelized
sparse matrix computation module is specially implemented
for GPU acceleration of TLGCN.

As illustrated in Fig. 5, two key schedulers, i.e., SM and
warp, are adopted in CUDA programming to achieve two-
level sparse matrix computation parallelism. Compressed
Sparse Row (CSR) format is utilized to re-represent a sparse
user-service QoS matrix, which is constituted by three arrays:
a) ptr array storing the row pointers, which denote the position
of each row’s first entry; b) idx array storing the column
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Fig. 5. CUDA-parallelized sparse matrix computation module.

indexes; and c) val array storing the values of the known data,
i.e., the known invocation records in QoS data. Note that
given a target QoS matrix Q, the size of ptr array is |5, i.e., the
number of rows or services of O, while the size of idx and val
arrays is |A[, i.e., the number of O’s known entries. Based on
such CSR format, we achieve efficient GPU computing by
designing some sparse matrix operators (SMOs) [33, 34], e.g.,
the outer product one and the row product one.

Generally, the size of block significantly influences the
performance of CUDA-parallelized computation. Since a warp
consists of 32 threads, it is better to set the size of block as a
multiple of 32. And owing to that GPU’s various architectures
has different numbers of SM, we follow the previous studies
[33, 34] to set the block size to 32%32 in this paper.

IV. EXPERIMENTS AND RESULTS

We perform extensive experiments on two real-world QoS
datasets to evaluate the proposed TLGCN model, and we aim
at answering the following three research questions (RQs):
® RQI. Is the multilayered design of attribute characteristics
extraction and light graph convolution helpful for improving
the estimation accuracy of a TLGCN model?

® RQ2. How do different hyper parameter settings, e.g., the
latent feature combination weight w and latent feature
dimension F, affect the performance of a TLGCN model?

® RQ3. How does the proposed TLGCN model perform
compared with state-of-the-art QoS estimators?

A. General Settings

Datasets. Two real cloud service QoS data! collected by
the WS-Dream system are applied in our experiments, which
are the largest publicly-available QoS datasets and widely
adopted in prior studies for QoS estimation [15-28]. On both
datasets, we carefully design multiple cases to validate each
model’s performance under different low densities, whose
details are shown in Table II. Note that the column
Train:Validation:Test denotes the ratio of training data,
validation data and testing data, e.g., 1%:4%:95% indicates
that 1% of A are chosen randomly as the training data, 4% of
A are chosen randomly as the validation data, and the
remaining 95% are chosen as the testing data.

'hitps://wsdream.github.io/dataset/wsdream_datasetl.html



TABLE II. PROPERTIES OF TESTING CASES

Dataset |A] |U] S| No. Train:Validation:Test
D1.1 1%:4%:959
Response D12 2"2:8‘2:2(5)02
”{ll)rr;)e 1,873,838 339 5,825 D13 396 12% 85%
D14 4%:16%:80%
D2.1 1%:4%:95%
Throughput D2.2 2%:8%:90%

1,831,253 339 5825

(D2) ' D2.3 3%:12%:85%
D2.4 4%:16%:80%

Evaluation Metrics. For each tested model, this study
mainly concerns its estimation accuracy for missing cloud
service QoS data. Hence, we use two commonly-adopted
evaluation metrics [16-24], i.e., the Root Mean Squared Error
(RMSE) and the Mean Absolute Error (MAE), to measure this.
Generally, the RMSE and MAE are formulated as:

> (4o =d) | /1

gsuc?¥

RMSE =

abs | ‘}l| .

MAE=| Y |q., -4,

9su€?

where ¥ denotes the testing dataset, || denotes the number of
entries of it.

Note that to evaluate the computational efficiency of an
involved model, the GPU training time on each testing case is
carefully recorded. We implement all experiments in Python
3.7, except that the compressed sparse matrix parallel program
is written with CUDA C and compiled with CUDA 10.1. All
empirical tests are uniformly deployed on a server with a 2.4-
GHz Intel Xeon 4214R CPU, four NVIDIA RTX 3090 GPUs,
and 128-GB RAM.

Comparison models. Eight state-of-the-art QoS estimators
are involved in our comparison, whose details are as below.

M1. Mult-VAE [35]. A generative model which builds a
variational AutoEncoder and introduces a multinominal
distribution into data to perform parameter estimation.
NeuMF [17]. A widely adopted CF baseline which
combines multilayered perception and inner product into
matrix factorization to achieve nonlinear estimation.

M3. MetaMF [24]. A federated meta matrix factorization
model for QoS data, which builds a federated learning
framework to generate private embeddings of users.

M4. LR-GCCF [32]. A linear GCN-based model which

removes nonlinearities to enhance the performance and

empirically explains the layer concatenation operation.

LightGCN [29]. A light GCN-based QoS estimator,

which removes feature transformation and nonlinear

activation to obtain efficient and accurate representation.

DGCN-HN [36]. A deep GCN-based model, which uses

hybrid normalization for flexible aggregation and adopts

residual connection to address over-smoothing problem.

M7. HMLET [28]. A hybrid method of linear and non-linear
CF, which is a GCN-based model and proposes a gating
module to select each node’s best propagation method.

MS8. TLGCN. The model given in Section III.

M2

MS.

Meé.

Training Settings. The following settings are employed
for each tested model.

a) We initialize all the trained variables randomly with Xavier
method, and optimize all involved models with Adam;

b) For M1-3, we adopt the model architectures suggested in
their original papers, and for M4-8, i.e., all GCN-based
models, the latent feature dimension is fixed to 200;

¢) To achieve fair comparison, we carefully tune each model’s
hyper parameters to achieve the best performance;

d)On each testing case, we repeat the splitting and training
process for ten times and record the final average results;

e) Each model’s training process terminates if: a) the training
epoch reaches a preset threshold, i.e., 1000; or b) its
estimation accuracy keeps decreasing for 30 epochs.

TABLE III. THE RMSE AND MAE OF TLGCN WITH DIFFERENT NUMBER OF ATTRIBUTE CHARACTERISTICS EXTRACTION ON ALL TESTING CASES.
No 1 Layer (K=1) 2 Layers (K=2) 3 Layers (K=3) 4 Layers (K=4)

) RMSE MAE RMSE MAE RMSE MAE RMSE MAE
D1.1 1.7595 0.6898 1.7240 0.6963 1.7129 0.6865 1.7321 0.6902
D1.2 1.5480 0.6471 1.5280 0.6091 1.5230 0.5989 1.5292 0.6035
D1.3 1.4847 0.6290 1.4512 0.5765 1.4455 0.5600 1.4505 0.5611
D14 1.4424 0.6078 1.4035 0.5455 1.3967 0.5336 1.4042 0.5307
D2.1 0.9014 0.3378 0.8728 0.3327 0.8660 0.3280 0.8643 0.3297
D2.2 0.7907 0.3033 0.7779 0.3011 0.7715 0.2944 0.7718 0.2981
D23 0.7074 0.2688 0.6539 0.2445 0.6894 0.2720 0.6880 0.2695
D2.4 0.6677 0.2473 0.6047 0.2248 0.6535 0.2594 0.6541 0.2587

TABLE IV. THE RMSE AND MAE OF TLGCN WITH DIFFERENT NUMBER OF LIGHT GRAPH CONVOLUTION ON ALL TESTING CASES.
No. 1 Layer (L=1) 2 Layers (L=2) 3 Layers (L=3) 4 Layers (L=4) 5 Layers (L=5) 6 Layers (L=6) 7 Layers (L=7) 8 Layers (L=8)

i RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
D1.1 1.7477 0.6939 1.7330 0.6875 1.7129 0.6865 1.7057 0.6836 1.7104 0.6780 1.7099 0.6794 1.6976 0.6760 1.6986 0.6755
D1.2 1.5344 0.6079 1.5250 0.6045 1.5230 0.5989 1.5197 0.5984 1.5131 0.5984 1.5119 0.5959 1.5076 0.5959 1.5063 0.5972
D1.3 1.4533 0.5667 1.4490 0.5674 1.4455 0.5601 1.4454 0.5564 1.4441 0.5603 1.4435 0.5567 1.4434 0.5583 1.4427 0.5657
D14 1.4007 0.5407 1.3965 0.5373 1.3967 0.5337 1.3962 0.5312 1.4019 0.5345 1.3995 0.5307 1.3990 0.5324 1.3962 0.5328
D2.1 0.8724 0.3312 0.8667 0.3284 0.8660 0.3280 0.8613 0.3267 0.8564 0.3258 0.8543 0.3257 0.8528 0.3261 0.8508 0.3260
D2.2 0.7807 0.2995 0.7781 0.2984 0.7715 0.2944 0.7668 0.2931 0.7598 0.2916 0.7558 0.2901 0.7504 0.2890 0.7524 0.2895
D2.3 0.7043 0.2793 0.6962 0.2753 0.6894 0.2720 0.6826 0.2701 0.6748 0.2684 0.6718 0.2675 0.6695 0.2670 0.6665 0.2664
D2.4 0.6620 0.2618 0.6565 0.2603 0.6535 0.2594 0.6509 0.2585 0.6483 0.2570 0.6460 0.2564 0.6448 0.2572 0.6430 0.2572




B. Effect of Multilayered Structure (RQ1)

To investigate whether TLGCN can benefit from the
multilayered structure of attribute characteristics extraction
and light graph convolution, we vary the depth of two
modules, i.e., we search K in {1, 2, 3,4} and L in {1, 2, 3,4, 5,
6, 7, 8}. The experimental results are shown in Tables III and
IV. Jointly analyzing them, we have the following findings:

a) Increasing the depth of the attribute characteristics
extraction module significantly enhances TLGCN’s
estimation accuracy for missing QoS data. For instance,
as recorded in Table III, by fixing other hyper parameters
on D1.3, as K varies from 1 to 3, TLGCN’s RMSE
decreases from 1.4847 to 1.4455, which achieves the
estimation error gap (i.e., (Erroruigi—Erroriow)/Errornign) at
2.65%. As far the MAE, it decreases from 0.6290 to 0.5600
with the estimation error gap of 10.97%. Similar situations
can be found on other testing cases. In most cases, TLGCN

can achieve the best performance as K=2 or 3, and stacking
more layers leads to its overfitting.

b) Capturing the high-order connectivity information from

user-service interaction graph substantially enhances
the collaborative QoS signal. As summarized in Table IV,
on all eight testing cases, the estimation errors decrease
greatly with the increase of L. For instance, on D2.1, as L=1
while others being fixed, TLGCN achieves the RMSE and
MAE at 0.8724 and 0.3312. However, as L increases to 8§,
the values of them both decrease to 0.8508 and 0.3260, i.e.,
the estimation error gap in RMSE and MAE are at 2.48%
and 1.57%. Note that on most cases, TLGCN achieves the
highest accuracy as L=8, whose great improvements can be
attributed to the abundance of high-order connectivity
information and layer combination addressing the over-
smoothing problem. Hence, it is vital to explicitly exploit
the collaborative signal from user-service interactions.
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Errors of TLGCN as F varies while others being fixed on all testing cases.



TABLE V. THE RMSE, WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES.
No. M1 M2 M3 M4 M5 M6 M7 M8
D1.1 1.9396+7.7E-4¢  1.9718+4.0E-3¢ 1.92294+2.4E-2¢ 1.86214+9.2E-5¢ 1.8147+1.4E-3¢ 2.0220+2.6E-3¢ 1.8685+1.2E-2¢ 1.6990+5.0E-3
D1.2 1.9141+5.0E-4  1.7398+7.0E-3+ 1.8414+3.1E-2¢ 1.8443+8.6E-4* 1.6361+8.5E-4+ 1.8406+1.6E-3+ 1.6499+3.8E-3+ 1.5210+4.9E-3
D1.3 1.89734+9.1E-4¢ 1.6148+1.6E-3¢ 1.78204+2.6E-2¢ 1.7536+8.2E-2¢ 1.5848+2.8E-4¢ 1.7278+1.9E-3¢« 1.5771+3.0E-3¢+ 1.4503+1.7E-3
D14 1.8839+3.3E-4e  1.5318+4.2E-3+ 1.7446+1.4E-2+ 1.5449+1.2E-2+ 1.5514+2.0E-4* 1.6525+1.3E-3+ 1.5169+3.2E-3+ 1.4016+6.3E-4
D2.1 1.1404+1.1E-3+ 1.0480+1.2E-2+ 1.0827+8.4E-3» 1.0971+3.8E-4» 0.9775+2.8E-3» 1.1756+1.2E-3+ 1.0578+1.3E-2+ 0.8501+9.1E-4
D2.2 1.1266+6.5E-4+  0.7710+4.8E-3*  0.9995+3.3E-2¢ 1.0310+1.3E-2* 0.7769+1.4E-3+ 1.0756+1.4E-3+ 0.8061+1.8E-2¢ 0.7422+2.3E-3
D2.3 1.1171+1.3E-3+  0.6727+6.0E-3+ 0.9334+1.2E-2+ 0.8805+1.5E-2¢ 0.6674+6.5E-4» 0.9548+2.9E-3+ 0.6825+5.3E-3+ 0.6125+2.2E-3
D24 1.0992+7.6E-4+  0.6696+5.6E-2+  0.8760+7.7E-3+ 0.7467+7.8E-3+ 0.5982+1.4E-3+ 0.8566+9.3E-4s 0.6411+5.2E-3+  0.5718+2.4E-3
Win/Loss 8/0 8/0 8/0 8/0 8/0 8/0 8/0 —
F-Rank* 7.63 3.75 6.00 5.25 2.63 6.50 3.25 1.00
*A lower F-rank value denotes a higher estimation accuracy for missing QoS data; and ¢ indicates that M8’s RMSE is lower than its peers.
TABLE VI THE MAE, WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES.
No. M1 M2 M3 M4 M5 M6 M7 M8
D1.1 0.9399+1.4E-3+ 0.7936+2.6E-3+ 0.8768+1.8E-2¢ 0.8899+8.0E-3+ 0.7771+8.5E-4» 0.7590+5.2E-4+ 0.7571+1.1E-3» 0.6872+1.4E-3
D1.2 0.9108+5.6E-3+  0.7025+5.3E-3+ 0.8814+1.3E-2¢ 0.8782+8.0E-3+ 0.7162+3.1E-3+ 0.7452+6.6E-4+ 0.7043+1.6E-3+ 0.6041+2.8E-3
D1.3 0.8925+2.4E-3+ 0.6413+1.2E-3+ 0.8635+1.3E-2+ 0.8521+1.4E-2¢ 0.6845+4.3E-4» 0.7223+4.3E-4» 0.6651+2.2E-3+ 0.5632+2.0E-3
D14 0.8562+1.9E-3+ 0.6100+2.3E-3+ 0.8264+1.3E-2¢ 0.7498+1.1E-2* 0.6542+6.1E-4* 0.7019+5.9E-4» 0.6288+3.3E-3+  0.5380+1.7E-3
D2.1 0.5136+5.1E-4+  0.3934+5.0E-3+  0.5472+1.5E-2+ 0.5549+9.2E-3+ 0.3875+8.0E-4» 0.4380+1.1E-3+ 0.3983+2.8E-3+ 0.3278+9.8E-4
D2.2 0.4838+7.1E-4+  0.3035+2.7E-3+ 0.5267+2.3E-2* 0.5354+6.8E-3* 0.3147+1.7E-3+ 0.3942+3.1E-4» 0.3238+6.9E-3+ 0.2864+1.1E-3
D23 0.4767+4.8E-4¢  0.2302+6.4E-4 0.48124+2.0E-2¢ (0.4889+1.3E-2¢ 0.2647+9.0E-4¢ 0.3660+6.2E-4¢ (0.2840+2.9E-3¢«  0.2303£1.0E-3
D24 0.4775+1.4E-3+  0.2160+7.4E-4  0.4283+1.7E-2+  0.3889+6.6E-3+ 0.2352+8.0E-4e 0.3351+8.4E-4» 0.2674+2.6E-3+  0.2121+8.4E-4
Win/Loss 8/0 7/1 8/0 8/0 8/0 8/0 8/0 —
F-Rank* 7.25 2.38 6.88 6.88 3.38 4.75 3.38 1.13

*A lower F-rank value denotes a higher estimation accuracy for missing QoS data; and ¢ indicates that M8’s RMSE is lower than its peers.

TABLE VIIL. THE TIME COST TO CONVERGE IN RMSE (SEC.), WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES.
No. M1 M2 M3 M4 M5 M6 M7 M8
D1.1 20+0.89¢ 2586+116.63¢ 324446.59 267+28.61 207+£7.62¢ 263+6.16° 990+215.41+ 5+1.17
D1.2 20+1.04- 1623+307.52¢ 206+47.65¢ 187+11.42« 274+14.13¢ 370+18.87¢ 1377£157.37+ 6+2.03
D1.3 19+1.69- 2872+433.92¢ 172433.05¢ 687+384.08« 261+12.60+ 541+10.72 1755+108.29+ 7+2.26
D1.4 20+2.50 2391+482.72+ 128+29.60+ 1028+42.94 232+10.53¢ 645+23.18¢ 1915+113.27+ 21+£7.80
D2.1 48+47.72« 3178+456.85¢+ 306+9.68 314+30.50- 252+17.90+ 229+5.14¢ 1208+251.00 7+0.46
D2.2 42+1.94 2627+450.25¢ 243+43.49+ 821+63.68¢ 355+17.80 346+14.48« 1196+96.74« 5+0.26
D2.3 45+2.72¢ 2691+£233.52¢ 175+21.71 796+40.22« 452+28.96¢ 549+15.20- 2281+88.89+ 38+4.57
D2.4 45+3.65¢ 1841+337.03 127+£13.27¢ 7714£33.35¢ 495+17.40+ 740+16.64+ 2421+£220.69+ 30+1.46
Win/Loss 7/1 8/0 8/0 8/0 8/0 8/0 8/0 —
F-Rank* 1.88 7.88 3.75 5.50 4.13 4.63 7.13 1.13

*A lower F-rank value denotes a higher efficiency when addressing a QoS matrix; and * denotes that M8’s converging time cost is less than its peers.

TABLE VIII.  THE TIME COST TO CONVERGE IN MAE (SEC.), WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES.
No. M1 M2 M3 M4 M5 M6 M7 M8
D1.1 25+2.02¢ 2552+61.90+ 80+18.40- 236+44.67¢ 247+12.38¢ 157+13.53¢ 1205+229.80 17+3.82
D1.2 33+9.81- 1544+318.33 82+69.83¢ 170+13.89« 418+33.15¢ 444+14.30+ 1791+167.32« 13+4.98
D1.3 40+2.70 2851+426.92¢ 137+93.57« 300+269.10- 410+12.41 604+12.57« 2037£105.61¢ 30+9.28
D1.4 41+1.98 2470+376.01+ 153+34.35¢ 850+30.21+ 438+13.84¢ 693+19.62¢ 2112+123.96+ 25+12.28
D2.1 55454.89- 3102+368.68+ 98+32.95 259+81.15¢ 309+24.14- 180+2.30 991+182.41+ 15+5.12
D2.2 52+2.73¢ 2632+457.16° 192+102.37+ 276+220.43+ 445+20.52+ 320+8.12¢ 974+89.25¢ 8+0.67
D2.3 50+2.87¢ 2655+228.16+ 189+34.68+ 655+44.81¢ 44242425+ 534+7.79« 1856+65.92¢ 33+2.78
D2.4 45+2.36 1971+320.04- 155+14.60+ 642+32.04+ 449+26.37+ 712+3.48e 2044+152.14 28+2.32
Win/Loss 8/0 8/0 8/0 8/0 8/0 8/0 8/0 —
F-Rank* 2.00 7.75 3.00 4.88 5.00 5.13 7.25 1.00

*A lower F-rank value denotes a higher efficiency when addressing a QoS matrix; and * denotes that M8’s converging time cost is less than its peers.

TABLE IX. RESULTS OF THE WILCOXON SIGNED-RANKS TEST IN RMSE. TABLE X. RESULTS OF THE WILCOXON SIGNED-RANKS TEST IN MAE.
Comparison R+* R- p-value** Comparison R+* R- p-value**
M8 vs M1 36 0 0.0039 M8 vs M1 36 0 0.0039
MS8 vs M2 36 0 0.0039 MS8 vs M2 35 1 0.0078
M8 vs M3 36 0 0.0039 M8 vs M3 36 0 0.0039
MS8 vs M4 36 0 0.0039 MS8 vs M4 36 0 0.0039
MS8 vs M5 36 0 0.0039 MS8 vs M5 36 0 0.0039
MS8 vs M6 36 0 0.0039 MS8 vs M6 36 0 0.0039
MS8 vs M7 36 0 0.0039 MS8 vs M7 36 0 0.0039

*A higher R+ value denotes M8 has a higher accuracy than its peers;
**The accepted hypotheses are highlighted with the significance level of 0.1.

*A higher R+ value denotes M8 has a higher accuracy than its peers;

**The accepted hypotheses are highlighted with the significance level of 0.1.



TABLE XI. RESULTS OF WILCOXON SIGNED-RANKS TEST ON THE TABLE XII.  RESULTS OF WILCOXON SIGNED-RANKS TEST ON THE
CONVERGING TIME COST IN RMSE. CONVERGING TIME COST IN MAE.

Comparison R+* R- p-value** Comparison R+* R- p-value**
M8 vs M1 35 1 0.0078 M8 vs M1 36 0 0.0039
M8 vs M2 36 0 0.0039 M8 vs M2 36 0 0.0039
M8 vs M3 36 0 0.0039 M8 vs M3 36 0 0.0039
M8 vs M4 36 0 0.0039 M8 vs M4 36 0 0.0039
M8 vs M5 36 0 0.0039 M8 vs M5 36 0 0.0039
M8 vs M6 36 0 0.0039 M8 vs M6 36 0 0.0039
M8 vs M7 36 0 0.0039 M8 vs M7 36 0 0.0039

*A higher R+ value denotes M8 has a higher efficiency than its peers;
**The accepted hypotheses are highlighted with the significance level of 0.1.

C. Analysis of Hyper Parameter Sensititvity (RQ2)

The performance of a deep learning-based model can be
affected by many hyper parameters, e.g., the batch size, initial
learning rate, and regularization coefficient. For TLGCN: the
batch size is fixed at 512; the learning rate is searched
amongst {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}; and the
coefficient of L: regularization is tuned in {107, 10, ---, 10",
10%}. Considering two unique hyper parameters of TLGCN,
i.e., the latent feature combination weight w and latent feature
dimension F. Figs. 6 and 7 depict the influence of them while

others being fixed. From them, we have the following findings:

a) o significantly affects TLGCN’s RMSE/MAE. For
instance, as depicted in Fig. 6(b), on D1.2, as w varies from
0.1 to 0.9 while others being fixed, the RMSE increases
from 1.5200 to 1.5895 with the RMSE increment of 4.37%.
Considering the MAE, it increases from 0.5983 to 0.6910
with the MAE increment of 13.42%. Similar situations are
encountered in other cases. Note that o is data-dependent,
as shown in Fig. 6, on D1.1-1.3, TLGCN achieves the lower
RMSE as w=0.1, while on D1.4-2.4, the lower RMSE is
achieved as w=0.8. Hence, for different datasets, ®w should
be tuned carefully to obtain a satisfactory performance.

b) F also greatly influences TLGCN’s estimation accuracy,
and it performs differently in RMSE and MAE. For
instance, as illustrated in Fig. 7(a), on D1.1, by fixing other
hyper parameters, as =50, TLGCN achieves the RMSE at
1.7366. However, as F'is set to 200, the RMSE decreases to
1.7099 with the estimation error gap of 1.54%. Note that
F’s effects vary greatly in RMSE and MAE, for instance, as
shown in Fig. 7(e), on D2.1, as F increases from 20 to 500,
the RMSE increases from 0.8388 to 0.8615 which achieves
the RMSE increment at 2.63%. However, the MAE
decreases from 0.3448 to 0.3274 with the estimation error
gap of 5.05%. We attribute this phenomenon to that the
testing cases are still not big enough, and we will test
TLGCN’s performance on larger-scale datasets to deeply
understand it in our future work.

D. Comparison with State-of-the-Art Models (RQ3)

We perform detailed comparisons with seven state-of-the-
art QoS estimators. Tables V-VIII present the RMSE, MAE,
GPU time cost to converge in RMSE and MAE of M1-8 on all
testing cases. To deeply understand the experimental results, in
Table V-VIII, the second-to-last rows record the win/loss
counts of M8 versus other models; the last rows summarize the
Friedman statistical results of all tested models [37]. Note that
as significance level=0.05, the hypothesis that all involved
models are significantly different is accepted. And the results
of Wilcoxon singed-ranks test are recorded in Table IX-XII

*A higher R+ value denotes M8 has a higher efficiency than its peers;
**The accepted hypotheses are highlighted with the significance level of 0.1.

[37], which is helpful to check whether M8 possesses higher
estimation accuracy for missing QoS data and computational
efficiency than its peers. From these summarizations, we
achieve the following findings:

a) M8, i.e., TLGCN significantly outperforms its peers in
estimation accuracy for missing QoS data. Owing to its
full modeling for the attribute characteristics and high-order
connectivity information, on all testing cases, M8 achieves
satisfactory performance gain. For instance, as recorded in
Table V, on D2.1, M8 achieves the RMSE at 0.8501, which
is about 25.46% lower than M1’s 1.1404, 18.88% lower
than M2’s 1.0480, 21.48% lower than M3’s 1.0827, 22.51%
lower than M4’s 1.0971, 13.03% lower than M5’s 0.9775,
27.69% lower than M6’s 1.1756, and 19.64% lower than
M7’s 1.0578. Similar situations in RMSE and MAE are also
encountered on other testing cases. More persuasively, M8
also has the lowest F-rank value and supported Wilcoxon
signed-ranks test results, e.g., as shown in Table V, in
RMSE, M8’s F-rank value is 1.00, which is lower than 7.63,
3.75, 6.00, 5.25, 2.63, 6.50, and 3.25 achieved by M1-7.

b) M8, i.e., TLGCN has substantially higher computational
efficiency than that of its peers when addressing a QoS
matrix. As recorded in Tables VII-VIII and XI-XII, since it
adopts data density-oriented principle and light graph
convolution, M8’s time cost in RMSE/MAE is far less than
its peers. For instance, as shown in Table VII, on DI1.1, in
RMSE, M8 takes 5 seconds to converge, which is 25.00%
of 20 seconds by M1, 0.19% of 2586 seconds by M2,
1.54% of 324 seconds by M3, 1.87% of 267 seconds by M4,
2.42% of 207 seconds by M5, 1.90% of 263 seconds by M6,
and 0.51% of 990 seconds by M7; MAE is similar.

E. Summary

We summarize that TLGCN achieves important virtues:
a) High estimation accuracy for missing user-service QoS data;
b) Highly competitive computational efficiency.

V. CONCLUSION

Aiming at performing efficient and accurate representation
learning for QoS data, this paper proposes a TLGCN model. It
constructs a multilayered fully-connected network to extract
services’ attribute characteristics; uses light graph convolution
to learn high-order connectivity information from user-service
interactions; and incorporates data density-oriented principle to
achieve high computational efficiency. Experimental results on
two real QoS data demonstrate that TLGCN significantly
outperforms the state-of-the-arts. Following the recent
researches [38], we plan to boost the strengths of its graph
convolution on larger-scale QoS data in our future work.
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