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Fig. 1: Illustration of sampling networks with the NeSt model. Starting from an original network we use the Color Refinement
(CR) algorithm to extract node colors for different depths d (blue box). At each d, nodes with an isomorphic neighborhood
tree of depth d are assigned the same color. We then sample graphs via the locally Colored Configuration Model such that the
CR colors of the original network are preserved. This ultimately preserves neighborhood trees as well.

Abstract—We develop a new method to efficiently sample syn-
thetic networks that preserve the k-hop neighborhood structure
of a given network for any given k. The proposed algorithm al-
lows trading off the variety in network samples for the amount of
neighborhood structure that is guaranteed to be preserved. Our
key innovation is to employ a colored Configuration Model with
colors created from iterations of the so-called Color Refinement
algorithm. We prove that, as the amount of structural information
that is preserved increases, the generated synthetic networks and
the given original network become more and more similar and are
finally indistinguishable in terms of centrality measures such as
PageRank, Katz centrality, eigenvector centrality and HITS. Our
work enables to more efficiently generate samples with adjustable
similarity to the original network, especially for large networks.

Index Terms—network generation, color refinement, colored
configuration model, network null models, network sampling

I. INTRODUCTION

Current network null models preserve only very local in-
formation about nodes, such as degree, but preserving the
larger neighborhood structure of nodes is necessary when
null models should resemble a given network more closely.
Current null models either lack that ability or are hard or even
impossible to fit and sample for large networks.

In this paper, we introduce a simple and tunable network
null model which preserves the neighborhood trees around
each node up to a specific depth d. Even for large networks,
the model is easy to fit, can be efficiently sampled, and
well-approximates a given network on a range of central-
ity measures. We achieve this by combining the so-called

Color Refinement or Weisfeiler-Lehman algorithm [1] (an
approximate graph isomorphism test) with a locally Colored
Configuration Model [2], to obtain network models we call
NeSt models. With the depth parameter d, we can tune how
deep the multi-hop neighborhood structure of each node in
the original network is preserved in the null model (See Fig.
1 for an illustration). Ultimately, select spectral properties of
the original network are exactly preserved in samples from our
network model. We demonstrate the utility of NeSt by gener-
ating null networks which better and better preserve ‘spectral’
centrality measures such as PageRank, Katz centrality, HITS,
and eigenvector centrality with increasing depth.

Contributions: We introduce a new class of network null
models, the NeStdG(c(0)) model, whose samples mimic the
original network G in its neighborhood tree structure up
to depth d with starting colors c(0). We further present an
algorithm that allows efficient Markov Chain Monte Carlo
sampling from the introduced model. We prove that NeSt
samples exactly preserve popular centrality measures of G for
an appropriate choice of c(0) and a large enough value of d.
For lower values of d, we show that early convergence of
the PageRank power iteration in the original network carries
over to corresponding NeSt samples. Concluding, we illustrate
empirically that similar low d convergence observations can be
made across a range of centralities and real-world networks.

Network null models: There exists a broad range of net-
work (null) models, including mechanistic models of network
formation, models for growing networks, and many more.
In this work we are concerned with null models for static,
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fixed networks described by (potentially) directed graphs. The
purpose of these network models is typically to preserve
relevant properties (observables) of empirically measured real-
world data, while otherwise maximizing randomness [3], [4].
Depending on the chosen model, the desired network prop-
erties may either be preserved only in expectation, i.e., on
average across the whole ensemble of generated networks or
exactly in each sample. We list some of the most commonly
used null models in the following.
Erdős-Rényi type networks In Erdős-Rényi (ER) ran-
dom graphs, edges exist with equal probability, which pre-
serves network density on expectation. Inhomogenous random
graphs [5] (IRG) generalize ER-random graphs by allowing
varying edge probabilities. This enables the popular stochastic
block model [6] (edge probability depends on group mem-
bership) and the Chung-Lu model [7] (degree distribution is
preserved on expectation).
Configuration models The configuration model [8], [9] (CM)
keeps degree of each node fixed in each sample. In the globally
colored configuration model [10] we associate a color to
each node and fix the total number of edges between colors.
Alternatively, in locally-colored configuration models [2] we
fix the color of each nodes’ neighbors.
Exponential Random Graph models (ERGMs) [11] are
popular in the social sciences. They specify structures to be
preserved in expectation by including them in an “energy
term” of a Gibbs distribution from which networks are sam-
pled. While the ERGM formulation is very flexible, fitting the
parameters of the model is in general a difficult task [12], and
sampling from these network models is often problematic [13].
Machine learning based network generators [14] are gain-
ing popularity in scenarios where multiple samples from
one family of networks (e.g. enzymes) are available. Deep
learning methods like Variational Auto Encoders or Generative
Adversarial Networks can then be employed to learn the
distribution of this family of networks. While these methods
can learn arbitrary distributions of networks, they are not easily
employed when learning from large graphs.

Outline: We start by introducing some prerequisites related
to centrality measures and the color refinement algorithm.
Subsequently, we introduce the NeSt model, discuss how we
can sample from this model and investigate its mathematical
properties. Finally, we show empirically how certain network
centrality measures converge to those of the original network,
even before the exact neighborhood tree structure of the
original network is preserved (i.e., the final colors in the CR
algorithm are reached). We conclude the paper by highlighting
limitations and potential further impact of our work.

II. PRELIMINARIES AND NOTATION

Graphs. A graph or network G=(V,E) consists of a set
of nodes V and edges E⊆{uv |u, v∈V }. We always assume
V ={1, ..., n}, thus graphs are labeled and have an adjacency
matrix A∈{0, 1}n×n with Ai,j=1 if ij∈E and 0 otherwise.
We distinguish matrix powers (Ak) from matrices with super-
scripts (A(k)) by parenthesis. A graph G is undirected if uv∈

E⇔vu∈E, otherwise G is directed. For directed graphs the
in/out-neighborhood is Nin/out(v)={x|xv/vx∈E} while for
undirected graphs the neighborhood N(v)=Nin(v)=Nout(v).
The degree deg and in/out-degree degin/out is the cardinality
of the respective neighborhood sets.
Colorings. A graph coloring is a function c:V→{1, ..., k}
that assigns each node one out of k∈N colors. Each coloring
induces a partition C of the nodes into equivalence classes of
equal color Ci={v∈V |c(v)=i}. Given colorings c1, c2, we
say c1 refines c2, denoted by c1vc2, if c1(v)=c1(u)⇒c2(v)=
c2(u). Similarly, if c1vc2 and c2vc1, c1 and c2 are equivalent.
Centrality measures. Centrality measures assign importance
scores to nodes such that important nodes have high centrality
values. In this work, we mostly consider eigenvector-based
centralities ΓX, which compute the centrality scores of the
nodes as the dominant eigenvector w of certain matrices MX :

ΓX = w, where MXw = λw and λ = argmax
λi∈spec(MX)

λi

This is ill-defined when there are multiple dominant eigenvec-
tors. We use a definition that ensures a unique centrality and
agrees with the above if the dominant eigenvector is unique:

w = lim
m→∞

1

m

m∑
i=0

(λ−1MX)i1

For the Eigenvector Centrality [15], the relevant matrix is

MEV = A>. (ΓEV)

Similarly, the well-studied PageRank [16] measure corre-
sponds to the dominant eigenvector of the following matrix:

MPR = αĀ>D−1 + (1− α)
1

n
1n1

>
n , (ΓPR)

where α ∈ [0, 1] is a so-called damping parameter and Ā is the
adjacency matrix of an augmented graph in which we connect
zero out-degree nodes to all nodes in the graph. Thus the
diagonal matrix of out-degrees D = diag(Ā1) is invertible.

HITS [17] assigns each node both a hub-score hv and an
authority score av . These are the dominant eigenvectors of:

Mauth = A>A (Γauth), Mhub = AA> (Γhub)

Katz centrality [18] is defined as:

ΓKatz =

∞∑
k=0

n∑
j=1

ak(Ak)j, =

∞∑
k=0

ak(Ak)>1 (ΓKatz)

with 1
a > maxλi∈spec(A) |λi| being a parameter. Small/large

values of a put more weights on shorter/longer paths.

A. Color refinement

The color refinement algorithm (CR) also known as We-
isfeiler Lehman algorithm and originally proposed in [1] is
a simple and efficient algorithm that is frequently used in
the context of the graph isomorphism problem. CR iteratively
assigns colors to the nodes of the graph. Starting from an
initial coloring c(0) the colors are updated by distinguishing
nodes that have a different number of colored neighbors. CR
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stops once the color partition C no longer changes. The initial
coloring is typically chosen as constant over all nodes, but can
also incorporate prior knowledge about the nodes provided.

The exact CR procedure follows the iteration:

c(d+1)(v) = hash
(
c(d)(v), {{c(d)(x) | x ∈ N(v)}}

)
(1)

where the doubled brackets indicate a multi-set (a set in which
an element can appear multiple times) and hash denotes some
injective function mapping the pair onto a color space. This
injectivity of the hash function implies that distinct inputs
are assigned distinct colors. Since the injective hash function
takes the previous color as the first argument, the colorings are
iteratively refined, i.e. c(d+1) v c(d). As there can be at most
n strict refinements c(d+1) @ c(d), eventually the algorithm
converges to a stable partition c(d

∗) ≡ c(d∗+1).
Once a stable partition c(∞) is reached, the partition will not

change. At this point, the nodes’ colors induce an equitable
partition, i.e., all nodes within one class have the same number
of connections to another class. In fact, the CR algorithm
converges to the coarsest equitable partition of the graph [19].
As an example consider the graph in Figure 1. The partition at
depth 3 is stable. There all nodes of a specific color have the
same number of colored neighbors as any other node of that
color. In contrast, the partition at depth 2 is not stable. There
the central red node has two blue neighbors while the top and
bottom red nodes have one blue and one teal neighbor.

Though typically used for undirected graphs, the CR al-
gorithm can be extended to directed graphs by replacing the
neighborhood N(v) in Eq. 1 with either the in- or the out-
neighborhood. We refer to the resulting colorings as c(d)in or
c
(d)
out respectively. We may further distinguish nodes by both

their in- and out-neighborhood:

c
(d+1)
both (v) = hash

(
c
(d)
both(v), {{c(d)both(x) | x ∈ Nin(v)}},

{{c(d)both(x) | x ∈ Nout(v)}}
) (2)

Note that after d iterations of the algorithm, the colors
encode information about the d-hop (in-/out-)neighborhood of
the nodes. To illustrate what we mean, once again consider
Fig. 1. The neighborhood tree can be seen on the right. It
has all paths of length ≤ d as its nodes and two of these are
connected if one of the corresponding paths extends the other
by exactly one node. The neighborhood tree shows exactly
what the CR colors encode in terms of neighborhood structure.
The color of the root node in the next iteration directly encodes
the structure of the whole tree in the sense they are the same
if and only if their neighborhood trees are isomorphic [20].

For directed graphs, the in- or out-neighborhood are isomor-
phic depending on the employed CR variant, e.g., for c(∞)

both
both in- and out-neighborhood are isomorphic, whereas for
c
(∞)
in only in-neighborhood trees of the nodes are isomorphic.

The CR algorithm has a worst-case runtime of O((|E| +
|V |)·log(|V |)) [21]. However, we use a variant that has worst-
case runtimeO(d·|V |·degmax·log(degmax)), which is preferable
on most real-world graphs for which typically d � |V | and
we often only care about colorings corresponding to small d.

III. THE NEST MODEL

In this section we introduce the Neighborhood Structure
Configuration model, short the NeSt model. This model
preserves neighborhood structure information of an original
network up to a specified depth d as encoded with the Color
Refinement Algorithm. The locally Colored Configuration
Model is then used to flexibly generate surrogate networks
for a given network. Importantly, due to its design, the NeSt
model is easy to fit and sample on a computer.

For a given labeled graph G and initial node colors c(0),
the set N d

G(c(0)) contains all labeled graphs whose nodes have
the same d-round CR colors as the original graph. The NeSt
model is the uniform probability distribution over N d

G(c(0))
for d ∈ N+. We think of initial colors c(0) and depth d as the
models’ hyper parameters, while the remaining parameters are
learned from the graph G. Note that preserving neighborhood
tree structure at depth d also preserves the neighborhood
structure at depth d′ ≤ d, which implies that the sets of
possible networks generated by the NeSt model are nested.

Before embarking on a more detailed technical discussion,
we state here several noteworthy properties of the NeSt model:

1) N (1)
G (const) recovers the standard configuration model

with degree sequence identical to G
2) The graphs G′ ∈ N (d)

G (const) and G are identically
colored during the first d steps of the CR-algorithm

3) The setN (d)
G contains all (simple) graphs that agree with

G on the first d steps of the employed CR-algorithm
4) Structure preserved in N (d)

G is also preserved in N (d+1)
G

5) N (d)
G (c0) ⊆ N (d)

G (const)

In the following we describe how we can efficiently sample
from NeSt, and outline several variations to enrich the standard
NeSt model and tailor it to specific scenarios.

A. Sampling from the NeSt model

In this section we outline how we can sample efficiently
from the NeSt model to generate networks which preserve
the neighborhood structure of the original network up to a
specified depth d.

To sample from the NeSt model we proceed as follows.
First, we partition the edges of the initial graph according
to the colors of their endpoints into disjoint subgraphs gCi,Cj
with V (gCi,Cj ) = Ci∪Cj and E(gCi,Cj ) = {xy | x ∈ Ci, y ∈
Cj , xy ∈ E(G)}. As an example, all edges connecting green
and red nodes are put into ggreen,red while edges connecting red
to red nodes are put into gred,red (see Fig. 2 for such a partition).
In the case of directed networks, we distinguish ggreen,red and
gred,green by the direction of the edge.

Second, after we have partitioned the edges into subgraphs,
we can randomize each subgraph via edge swaps. In such an
edge swap we choose two edges at random and swap their end-
points with one another. A few points in this context are worth
remarking upon. For unicolored subgraphs all edge swaps that
do not introduce multiedges are acceptable. The subgraphs can
thus be rewired as in the normal configuration model. The
subgraphs containing edges with endpoints of different color
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(a) Original network (b) NeSt rewired network

Fig. 2: Illustration of the rewiring procedure employed when
sampling from the NeSt(2) model. First, the edges are parti-
tioned into subgraphs according to the colors of depth 1 of
their endpoints. The striped regions with two colors (yellow-
green, green-red) correspond to bipartite networks connecting
nodes of different colors while the unicolored regions (red)
connect nodes with the same color. Second, we rewire each
subgraph (colored regions) while respecting bipartivity as
required. Overall this procedure preserves the CR-colors at
depth 2.

are bipartite. To ensure a consistent neighborhood preserving
sampling we can thus only allow edge swaps that preserve
this bipartite structure. These subgraphs are thus rewired as a
bipartite configuration model.

For directed graphs a similar scheme can be used: The
unicolored and two-color subgraphs are randomized according
to the directed configuration model. Unlike in the undirected
case, the bipartivity of the two-color subgraphs is preserved
automatically, since the edges are directed from Ci to Cj ,
swapping endpoints always preserves the color at the end. For
unicolored directed configuration models an additional triangle
swap is required for correct rewiring (see Section VIII).

The entire algorithm is displayed in algorithm 1. We note
that all edges in distinct subgraphs are independent, and thus
the sampling can run in parallel for different subgraphs.

As outlined, the sampling procedure can be decomposed
into drawing samples from well established configuration
models. We can thus draw upon the established research on
sampling from these models via MCMC using random edge
switches [22], [23] — the strategy we apply in this work —
although other strategies are also possible [24]. We assert the
utility of the sampling procedure with the following theorem:

Theorem 1. The sampling procedure shown in algorithm 1
samples uniformly at random from all labeled graphs in
N d
G(c(0)) for a given graph G, initial colors c(0) and depth d.

The proof can be found in the appendix (Section VIII). Note
that the above result not only establishes the correctness of
the algorithm but also that the samples drawn are maximally
random, in the sense that we draw uniformly from the space
of all graphs that respect the desired neighborhood constraints.
This also means the NeSt model is the maximum entropy
distribution over the set N d

G(c(0)).
We briefly comment on the intuition that edge swaps of

this fashion do not affect the colors obtained by CR. To
preserve the colors c(d) of a node from the original graph,

Input: Graph G, initial colors c(0), depth d
Output: Sample Graph G′ distributed as NeStdG(c(0))

1 Use CR to obtain depth d− 1 colors c(d−1)

2 Partition edges ij of G into subgraphs g
C

(d−1)
i ,C

(d−1)
j

3 Let G be a list of all those subgraphs
4 for subgraph gCi,Cj ∈ G do
5 for r · |E(gCi,Cj )| steps do
6 choose edges u1v1, u2v2 ∈ E(gCi,Cj )

uniformly at random
7 if u1v2 /∈ E(gCi,Cj ) and u2v1 /∈ E(gCi,Cj )

then
8 remove u1v1, u2v2
9 add u1v2, u2v1

10 if ci = cj then
11 randomly choose node triplet u1, u2, u3
12 if u1, u2, u3 constitute a directed triangle

then
13 flip the direction of the triangle

u1, u2, u3

14 Return G′ =
⋃
gCi,Cj∈G

gCi,Cj

Algorithm 1: Sampling from NeSt(d)G (c(0)) using edge
switches. The number of steps can be set by the user,
potentially also as a function of g. We use a number
of steps proportional to the number of edges in each
subgraph, which yields a runtime of O(r·|E(G)|·degmax) -
disregarding the computation time needed for the CR algo-
rithm. While for undirected graphs simple edge switches
(lines 6-9) are sufficient, for the directed case an addi-
tional directed triangle switch (lines 10-13) is required
for uniform sampling (see the proof of Theorem 1 in
Section VIII).

it is sufficient to preserve the node color and the multiset of
it’s neighboring nodes’ colors of the previous CR iteration
(c(d−1)). By performing the outlined edge swaps, the degree
of each node within the subgraphs stays the same. Thus for
any color, the number of neighboring nodes with that color
stays the same. Consequently, the multiset of neighboring
nodes’ colors stays the same. Note that preserving the local
configuration of neighborhood colors of each node is not the
same as preserving merely the total number of edges between
color classes as done in other configuration models [10].

B. Variations of the NeSt model

To emphasize the flexibility of our proposed scheme we
discuss some variations of the NeSt model in this section.
The initial node colors in the CR algorithm are a powerful
way to incorporate additional constraints to the network en-
semble. For concreteness, let us consider two simple examples.

• Assume the original network is bipartite and we want to
maintain this property. In this case, one can choose the
initial colors to reflect the bipartition.
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• Assume a network comprises several connected compo-
nents we want to keep separated. In this case, we can
choose the initial node colors to reflect the components.

A more elaborate use of the initial colors would be the
following. Assume we want to preserve the early steps of the
PageRank power iteration. One possible strategy to achieve
this is to color our graph with the out-degree of the nodes and
then perform the CR algorithm using the in-neighborhood. In
fact, this idea is formalized in Lemma 1.
Incorporating externally defined node colors If external
node colors are available, we can use them to initialize the
CR algorithm. This implies that the external colors are used
throughout the CR process, i.e., the external-colors of nodes
at any depth in the neighborhood are preserved. This can
be a strong restriction on the set of possible graphs in the
NeSt models. An alternative, less restrictive way to introduce
external colors is to use them as function arguments in
later iterations of the CR algorithm. As an example consider
injecting the external colors at iteration d− 1 when sampling
from NeSt(d). In this case only direct node neighbors are
additionally identified by their external color while two-hop
neighbors are not identified by their external color.
Samples in between depth d and d+1 For certain graphs, the
cardinality of the set of possible surrogate samples can shrink
drastically when moving from depth d to depth d+1. In those
cases, it can be useful to preserve more neighborhood structure
than depth d but less than depth d+ 1. To illustrate how this
can be achieved, observe that the CR algorithm as described
above, can alternatively be understood as a two step procedure:
1) each node ‘pushes’ its depth d color to all its neighbors and
itself; 2) each node uses the so collected multi-set of colors
to create the round d + 1 color. To retain the neighborhood
structure in between d and d + 1, one can adjust the first
pass in this alternative view of CR to only use all those nodes
belonging to a selected (e.g., random) subset of depth d colors.
This has the effect that only parts of the neighborhood tree are
being expanded, while other parts remain at the previous depth.
By employing the above procedure, we obtain colors c(d∗) with
c(d) w c(d∗) w c(d+1). Note: The second refinement relation is
not strict only if all nodes associated with the selected depth
d colors are ‘pushing’.

IV. THE ROLE OF THE DEPTH PARAMETER d

A. Maximum depth preserves centralities exactly

The following theorem exemplifies how the (full) neighbor-
hood information contained in the CR-induced node colors
preserves many observables of a network. Specifically, we
show how a range of centrality measures are preserved if ap-
propriate choices are made for the color refinement procedure.

Theorem 2. Let G1, G2 ∈ N∞G (c(0)) be samples from the
NeSt model with CR aggregating over the in-neighbors and
let A1, A2 be their adjacency matrices. If two nodes u, v ∈
V (G1 ∪G2) have the same color c(∞)(u) = c(∞)(v), then:

1) ΓKatz(u) = ΓKatz(v)
2) ΓEV(u) = ΓEV(v).

3) If c(0) v degout, then ΓPR(u) = ΓPR(v).
4) If c(∞)

in is computed for A>i Ai, then Γauth(u) = Γauth(v)
5) If instead CR aggregates over both in and out neighbors

then Γauth(u) = Γauth(v) and Γhub(u) = Γhub(v)

This theorem shows, that the centrality of a node is com-
pletely determined by the node’s stable color, i.e, the neigh-
borhood tree encoded by the color implies the value of the
centrality score — even for completely unrelated graphs. This
means, that for sufficiently large d such that stable coloring
is reached, many eigenvector-based centrality measures of the
original graph are preserved exactly in NeSt samples.

We remark that the HITS score factors in both A and A>

which makes it necessary to regard both in- and outgoing
neighbors in the CR computation (see Eq. (2)). The statement
for PageRank has previously been established in [25].
The algebraic view of CR To prove this result, we do an
established switch of our perspective from the combinatorial
view of CR to an algebraic one. Consider the following
partition indicator matrix whose columns indicate the color
class Ci = {v ∈ V | c(v) = i} a node belongs to:

H
(d)
i,j = I

[
i ∈ C(d)j

]
=

{
1 if i ∈ C(d)j

0 else
(3)

This indicator matrix H can be used to count the number
of neighbors of color class i for node u by simply multiplying
H with the adjacency matrix as follows:(

A>H(d)
)
u,i

=
∑

v∈Nin(u)

I
[
v ∈ C(d−1)

i

]
(4)

Once a stable coloring is reached, the partition described by H
is equitable which means each node from the same color class
has the same number of colored neighbors. Thus the rows of
the matrix AH(∞) are the same for all nodes of the same
color class. This allows us the express this matrix as

AH(∞) = H(∞)Aπ, (5)

where Aπ = (H>H)−1H>AH is the adjacency matrix of
the so-called quotient graph. We omit the superscript∞ when
referring to the indicator matrix H of the equitable partition.

The above considerations can be generalized for directed
graphs, in which case the neighbourhood has to be replaced
with either the out- or the in-neighbourhood:

AHout = HoutA
π
out or A>Hin = HinA

π
in

Proof: (Theorem 2) The main idea to the proof is that each
eigenvector of the Aπ matrix (Aπwπ = λwπ) can be scaled up
by multiplication with the partition indicator matrix H (defined
in Eq. (3) indicating the coarsest equitable partition) such that
Hwπ is an eigenvector of A to the same eigenvalue:

AHwπ = HAπwπ = λHwπ

In [26] it is shown that the dominant eigenpair of A is shared
in this way if it is unique, which is the key insight toward
proving the theorem, seeing as both Ai have the same H and
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Fig. 3: PageRank distribution of the NeSt(d)(degout) model for different values of the depth d. We show the distribution of
PageRank for the HepPh-network (red) and one sample from the fitted NeSt(d)(degout) model (black). We can see that at depth
of 1 (left) there still is a large difference of the original PageRank score compared the PageRank of the sampled network.
With increasing depth this error decreases and almost vanishes (max error < 10−16) for depth 3. This shows that multi-hop
neighborhood information can be necessary to accurately preserve the PageRank score.

Aπ by assumption. For (1) through (5) we always find that
ΓX = HΓπX . Noticing that the blown-up vector has the same
value for all nodes that are in the same WL-class (as indicated
by the columns of H) yields that the nodes have the same
centrality score.

(1) For Katz centrality, consider the definition:

ΓKatz=

∞∑
k=1

akA>1n=

∞∑
k=1

akA>H1k=H

∞∑
k=1

akAπin1k=HΓπKatz

(2) For eigenvector centrality, we have:

ΓEV=lim
m→∞

1

m

m∑
i=0

(λ−1A>)iH1=H lim
m→∞

1

m

m∑
i=0

(λ−1Aπin)i1

(3) For PageRank, notice that c(∞)
1,in , c

(∞)
2,in v c(0) v dout

implies that D−1out H = HDπ
out. Consider the page rank matrices

M1,M2 for both graphs. It holds that:

MiH = αA>i D
−1
out H +

(1− α)

n
1n1

>
nH

= H

(
αAπDπ

out +
(1− α)

n
1k(|C1|, ..., |Ck|)

)
= HMπ

As the graph GMπ that has Mπ as its adjacency matrix, is
strongly connected and aperiodic, Mπ is primitive with perron
(dominant) eigenvector wπ . This can then be scaled up to see
that Hwπ is shared between M1 and M2.

(4) Is similar to (2) but with A being replaced by A>i Ai.
(5) Let G be a graph with adjacency matrix A. Let H indi-

cate the coarsest equitable partition found by the WL algorithm
through aggregating both in- and out-neighbourhood, then:
A1H = HAπ = A2H as well as A>1 H = HAπin = A>2 H . We
prove by induction that all iterations a(k)i , h(k) are the same for
both graphs and are of the form a

(k)
i = Ha

(k)
π , h

(k)
i = Hh

(k)
π .

For the base case, h(0)i = 1 = H1. For the induction step:

a
(k+1)
i =

A>i Hh
(k)
π

‖A>i Hh
(k)
π ‖

=
HAπinh

(k)
π

‖HAπinh
(k)
π ‖

The same statement for h(k)i can be shown accordingly. The
final iterates have the form a

(∞)
i = Ha

(∞)
π , h

(∞)
i = Hh

(∞)
π

and the statement follows.

B. Intermediate d approximates centralities

In the previous section, we showed that it is possible to
preserve enough structure in samples from the NeSt model
to keep centralities like PageRank invariant. However for
some purposes, it may suffice to only approximately preserve
centrality scores while allowing for a richer set of possible
network samples. In the following, we thus consider in which
cases preserving smaller neighborhood depths is already suf-
ficient to maintain centralities. With PageRank as a running
example, we show that convergence guarantees in the power
iteration can be converted into approximation guarantees for
samples drawn from the NeSt model. The following result
formalizes the consequences of this for PageRank centrality.

Lemma 1. Let G be a graph with adjacency matrix A and let
G̃ be sampled from in-NeStdG(degout) with adjacency matrix
Ã. Consider the iterative computation of PageRank:

x(t+1) = A>D−1outx
(t) +

1− α
n

1n (6)

and let x̃(t+1) be defined accordingly for G̃, then:

x(t) = x̃(t) ∀t ≤ d

The proof of this lemma also implies an equivalent result for
x(t+1) = A>x(t) used when computing eigenvector centrality,
and can be adapted for any power iteration. Notice that if d
is large enough such that the coloring is stable, the lemma
implies statement (3) in Theorem 2.
The algebraic view for intermediate depth We extend the
previously established perspective to intermediate colors. That
is, we derive statements akin to Eq. (5) for the intermediate
colors. As noted in [27], nodes that have the same rows
in A>H(d) are in the same color class C(d+1)

i and vice
versa. We can thus establish the following connection between
consecutive iterations of CR:

AH(d) = H(d+1)Xπ
d+1 (7)

where Xπ
d+1 reflects the relationships between the colors at

depth d and d+ 1. Now, because G and G̃ sampled from in-
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NeStd(c0) have identical colorings for t ≤ d, they share the
same H(t) and Xπ

t matrices. A and Ã are thus related

A>H(t−1) = H(t)Xπ
t = Ã>H(t−1)

for all t ≤ d. These observations carry over to directed graphs.
Proof: For a proof of Lemma 1 we now consider the

PageRank iteration Eq. (6) starting with x(0) = 1n, which
is equivalent to the definition given in Section II [28] up to
normalization. First notice, that H(t)

in and D−1out are similarly
related as the adjacency matrix D−1out H

(t)
in = H

(t+1)
in Dπ

t+1 for
every t because Dout is encoded in the initial colors. We now
proceed by induction on t. We show that x(t) = H

(t)
in x

(t)
π ,

which holds for t = 0 and x(0) = const · 1. Assuming the
induction statement, it follows that:

x(t+1) = αA>D−1out x
(t) +

(1− a)

n
1n (8a)

= αA>D−1out H
(t)
in x

(t)
π +

(1− a)

n
1n (8b)

= H
(t+1)
in

(
αXπ

t+1D
π
t+1x

(t)
π +

(1− a)

n
1k

)
(8c)

The last line is x(t+1) = H
(t+1)
in x

(t+1)
π which completes the

induction. Repeating the same for x̃(t+1) concludes the proof.

Guaranteed similarity in PageRank Lemma 1 shows that
graphs sampled from in-NeStdG(degout) are constrained in
their first power iterations. Combining this observation with
convergence guarantees of the PageRank power iteration we
can be sure that two samples from the NeSt model are bound
to have centralities that are no further apart than the following:

Lemma 2. Let x and x̃ be the PageRank vectors of two
graphs sampled from in-NeStdG(degout). Let α be the PageRank
damping factor used. It holds that:

‖x− x̃‖1 ≤ 2αd+1

Informally, the mass of the PageRank vector for which the
iterates of the original and the synthetic network do not yet
agree upon, is of magnitude at most αd+1. Hence, the final
PageRank vectors are at most twice this magnitude apart.

Proof: From Lemma 1 the iterates x(t) = x̃(t) are the
same for t ≤ d. We use Theorem 6.1 in [29] that states:

‖x− x(i)‖1 ≤ αi‖x− x(0)‖1 ≤ 2αi (9)

We can slightly strengthen this bound as follows [28]. If we
start with the vector y(0) = 0 in Eq. (8), the next iteration
is y(1) = x(0) = (1 − α)1 for which we already know that
‖x− x(0)‖1 ≤ α. It follows that:

‖x− x(i)‖1 ≤ αi‖x− x(0)‖1 ≤ αi+1 (10)

We conclude the proof using the triangle inequality:

‖x− x̃‖1 ≤ ‖x− x̃(d)‖1 + ‖x̃(d) − x̃‖1
= ‖x− x(d)‖1 + ‖x̃− x̃(d)‖1 ≤ αd+1 + αd+1

These theoretical considerations provide only worst-case
bounds which are typically not tight for many (real-world)
graphs — as one can see by considering the case that for
regular graphs an equitable partition can already be reached
at d = 1. Then Lemma 2 yields a bound of 1.4 (using typical
α=0.85), while we know from Theorem 2 that the actual
difference is 0. The next bound provides better guarantees in
these cases.
Convergence of iteration implies similarity in PageRank In
many real-world networks, the PageRank iteration converges
faster than worst case. We thus establish a second bound
which relates the convergence in one network to a guaranteed
similarity in PageRank.

Corollary 1. With assumptions as in Lemma 1 and 2:

‖x− x̃‖1 ≤
2

1− α
‖x(k−1) − x(k)‖1

Colloquially speaking, Corollary 1 states that if the PageR-
ank iterations converge quickly, then the PageRank vectors of
synthetic and original network are not too far apart.

Proof: Mirroring the reasoning of [28], we have:

‖x(k−1) − x‖1 ≤
1

1− α
‖x(k−1) − x(k)‖1

Now, we have x(t) = x̃(t) for t ≤ k (Lemma 1). Therefore:

‖x−x̃‖1≤‖x−x̃(k)‖1+‖x̃(k)−x̃‖1=‖x−x(k)‖1+‖x̃−x̃(k)‖1
= 1

1−a

(
‖x(k−1)−x(k)‖1+‖x̃(k−1)−x̃(k)‖1

)
= 2

1−a
‖x(k−1)−x(k)‖1

V. EMPIRICAL ILLUSTRATION

We augment our theoretical considerations with an empirical
evaluation on a variety of real-world networks (both directed
and undirected) from different domains. We include the cita-
tion network HepPh, the web graph web-Google, the social
network soc-Pokec, the collaboration network AstroPh (all
previous are from [30]), and a network of phonecalls [31].
For details on the networks see Fig. 6.

We compute the CR colors using the indicated aggregation
strategy and starting colors. We then generate samples from
the NeSt model for each of the centralities, and compute
the centrality measures for the sampled networks. Centralities
are computed using a suitable iterative method until the
SAE between subsequent iterations falls below a convergence
threshold of 10−15. As initial condition we chose the normal-
ized (1-norm) / normal all-ones vector for PageRank / others.

We exemplify detailed convergence results for the PageRank
distribution on the HepPh-network in Fig. 3. To increase
visibility, nodes are sorted in decreasing order by their original
PageRank score. In the left plot at depth d=1 (one step of CR
starting from out-degree colors), we see that there is quite a
large difference in PageRank. While the maximum absolute
error (MAE) is below 0.002, the relative error can be an
order of magnitude. In the middle plot (d=2), the sampled
network closely approximates the true PageRank with the
MAE dropping three orders of magnitude. In the rightmost
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Fig. 4: Convergence of network centralities. We show the sum
absolute error (SAE) for a sample in relation to the original
network. Points are medians with 16%/84% quantile error bars
for 100 samples. Values are capped below by 10−16. Legend
is on top. From left to right increasingly deeper neighborhood
trees are preserved which leads to centrality measures being
better and better preserved.

1 3 5 7 9
0.0

0.2

0.4

0.6

0.8

1.0

28 29
depth 3

D
iv

er
sit

y
(1

-Ja
cc

ar
d)

AstroPh
HepPh
phonecalls
soc-Pokec
web-Google

Fig. 5: Diversity in NeSt(const) samples. We measure Diver-
sity as one minus the Jaccard-Similarity of the edges of the
original and sampled network. For a diversity of 1 the original
and sampled network share no edges, for a diversity of 0 the
networks agree perfectly. We see that for most networks, ex-
cept for the HepPh network, there is still quite some diversity
in the network samples. That is despite those networks better
and better preserving centrality measures compare Fig. 4.

Name directed EV #nodes #edges
Karate 7 3 34 78

AstroPh 7 3 18.772 198.110
phonecalls 7 3 36.595 45.680

HepPh 3 3 34.546 421.578
web-Google 3 3 875.713 5.105.039
soc-Pokec 3 3 1.632.803 30.622.564

Fig. 6: Statistics of the real world networks used. EV indicates
whether the dominant eigenvector is unique.

plot (d=3) the sample reflects the PageRank almost perfectly
(MAE drops by a factor of 10−10).

Convergence results for other networks are summarized in
Fig. 4. Here we no longer show the individual distributions
but the sum of absolute error (SAE) of the centrality of
a sample in comparison to the original network averaged
over 100 samples. The first two plots (4a and 4b) show
eigenvector centrality and Katz centrality for the NeSt model
which preserves in-neighborhood trees starting from uniform
colors. The third plot shows PageRank for the NeSt which
preserves in-neighborhood trees starting from a coloring that
reflects the out degree. The last plot (4d) shows the Authorities
(HITS) score for the NeSt which preserves both the in- and
out-neighborhood trees starting from uniform colors.

Better preserved neighborhood structure usually means di-
minished diversity in network samples, we show the extend of
this in Fig. 5. Finally we compare the NeSt model with other
random graph models in Fig. 7. For details on the ERGM used
see appendix. The ERGM is very slow because the PageRank
needs to be recalculated for each flip.
Implementation details For the CR-algorithm we use an
implementation suggested by Kersting et al. [27]. The code
is available at https://github.com/SomeAuthor123/NestModel.
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Fig. 7: Comparison of the NeSt model with other random
graph models. The left/right column correspond to the Karate
Club/ phonecalls network with 34/36k nodes. The rows show
sum absolute error (SAE) of the PageRank (top), Jaccard
similarity (mid) and runtime in seconds for 1000 samples
(bottom). Lower is better on all scales. Besides NeSt we
include Exponential Random Graph Models (ERGM), the
Configuration model and the Erdős-Rényi (ER) network.
ERGMs are excluded on phonecalls due to poor runtime. On
the small network (left) both ERGM and NeSt allow a trade-
off of similarity for SAE but ERGM offering poor runtime. On
the larger network (right) we still have the same tradeoff while
NeSt shows fast runtimes similar to Config./ER, but ERGMs
are no longer feasable (runtime).
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VI. DISCUSSION

Preserving centralities As shown in Section IV-B, the NeSt
models not only (approximately) preserve centrality measures,
but also the first iterates (up to depth d) of a corresponding
power iteration. Because we keep these early iterates invariant
as well, NeSt is not sampling from all networks with the
same centrality as the original one. Stated differently, there
can be networks with different neighborhood trees that have
the same centralities. Thus our model is not an attempt to
exactly preserve centrality scores. In fact, we believe that the
ability to maintain the neighborhood tree structure is more
meaningful, as the network structure itself is the fundamental
data we observe, whereas network statistics such as centrality
measures are derived from the network structure.
Limiting the number of colors The CR algorithm can lead to
color classes that contain just a single node, e.g., if there is a
node with a unique degree. As a consequence, the connectivity
pattern to that node is frozen in later NeSt of larger depth.
However in applications, it might be undesirable to distinguish
nodes with 1000 and 1001 neighbors. At the cost of not
preserving neighborhood trees exactly, we may thus limit
the minimal number of nodes within each color class by
employing a clustering algorithm rather than a hash function.

VII. CONCLUSION

In this paper, we have introduced NeSt models which
enable the creation of synthetic networks that preserve the
neighborhood structure of nodes in a given network up to a
specified depth. NeSt models thus represent a versatile general-
ization of existing configuration models. We demonstrate that
NeSt models are efficient to fit through the Color Refinement
Algorithm and easy to sample from, even for large networks.

While we illustrate the preservation of neighborhood struc-
ture by applying NeSt models for preserving centralities, the
capabilities of the NeSt model extend to the preservation
of many eigenvectors. This could open up NeSt models as
possible candidate null models for other spectral properties of
a given network. In fact, such spectral properties are important
for a range of dynamical processes on networks such as
(cluster) synchronization [32], consensus dynamics [33], or
questions related to controllability [34].

Further, an interesting connection between NeSt models to
message passing Graph Neural Networks (GNNs) exists: It
has been shown that GNNs with d layers and uniform node
initialization are no more expressive than the first d iterations
of the CR-algorithm [20], [35], [36]. As all samples from
the NeSt(d) model are identically colored during the first d
CR iterations, they are thus indistinguishable by those GNNs.
This opens up potential applications of the NeSt model and its
variants for GNNs, e.g., to create (difficult) benchmark data
sets. In summary, we believe that NeSt models can provide
a versatile and efficient instrument for network scientists that
aim to produce network null models that conserve the larger
neighbourhood structure of networks.
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VIII. APPENDIX

A. Proof of Theorem 1

Throughout this proof, we prove the statement for a sub-
graph gCi,Cj , as that directly implies the statement for the
whole graph. Toward this end, we must prove that the Markov
chain used to sample the graphs is connected, aperiodic and
doubly stochastic [9]. We start with the proof of connected-
ness. Let G be a graph, c(0) the initial colors and d ∈ N+.
Further, let O(G, d, c(0)) be the set of possible outputs of
algorithm 1 with these input parameters.

Claim 1.
O(G, d, c(0)) = N d

G(c(0))

Proof: ”⊆” The sampling procedure only edits edges
in g

c
(d−1)
i ,c

(d−1)
j

. Consider a single edge flip involving

u1, u2, v1, v2 as in algorithm 1 with c(d−1)(u1) = c(d−1)(u2)
and c(d−1)(v1) = c(d−1)(v2) by definition. We prove the most
restrictive case where colors are aggregated in both directions
as in Eq. (2) and edges are directed from c

(d−1)
i to c(d−1)j .

Let M (d−1)
X (v) = {{c(d)(x) | x ∈ NX(v)}} be the multi-

set of colors of neighbouring nodes for X ∈ {in, out}. Then
Eq. (2) can be rewritten as:

c(d)(u1) = hash
(
c(d−1)(u1),Min(u1),(

Mout(u1)\{{c(d−1)(v1)}}
)
∪ {{c(d−1)(v1)}}

)
We prove by induction that colors c̃(t) in the new graph G̃
remain unchanged for all involved nodes. The base case for
the initial colors holds per definition. For the induction step,
assume the statement holds for t and consider node u1:

c̃(t+1)(u1)

=hash
(̃
c(t)(u1), M̃in(u1), M̃out(u1)\{{c̃(t)(v1)}} ∪ {{c̃(t)(v2)}}

)
=hash

(
c(t)(u1),Min(u1),Mout(u1)\{{c(t)(v1)}} ∪ {{c(t)(v2)}}

)
=hash

(
c(t)(u1),Min(u1),Mout(u1)\{{c(t)(v1)}} ∪ {{c(t)(v1)}}

)
= c(t+1)(u1)

Here the first equality is the result of the induction statement
and the second equality holds because, in the original graph,
c(d)(v1) = c(d)(v2) implies that c(t)(v1) = c(t)(v2) for t ≤ d.
The same reasoning applies to the remaining nodes u2, v1, v2.

”⊇” The backward direction is somewhat less intuitive. We
show that any graph G′ with the same CR colors of depth d
can be reached by a sequence of at most |D|2 − 1 edits, where
D = (E(G)∪E(G′))\(E(G)∩E(G′)) is the set of edges G
and G′ don’t agree upon. We again concern ourselves with the
subgraphs gCi,Cj as using edge flips within these sub-graphs
is sufficient to convert G into G′, since if all edges in all
subgraphs agree then G and G′ are the same. Let g, g′ be the
subgraphs to the same pair of colors for G,G′ respectively.

Base case: |D| = 4. Let e1 6= e2 ∈ D ∩ E(g), e′1 6= e′2 ∈
D ∩ E(g′) and e1 = (u1, v1), e2 = (u2, v2). Then it must be
that e′1 = (u1, v2), e′2 = (u2, v1) (apart from renaming). As G

and G′ are both in N d
G(c(0)) we have that c(d)G (u1) = c

(d)
G′ (u1),

which implies that degout
g (u1) = degout

g′ (u1). As G and G′

agree on all other edges, this means e′1 = (u1, ·) or e′2 =
(u1, ·). Similar reasoning applied to u2 yields e′1 = (u1, ·)
and e′2 = (u2, ·). Repeating the same for the in-degree of the
vi’s and noting that (u1, v1) /∈ E(G′) yields the statement.

Induction step: n → n − 1. Let |D| ∩ (E(g) ∪ E(g′)) =
2n. Let e1 = (u1, v1) ∈ D ∩ E(g) be an edge that g and
g′ do not agree on. Since the degree in the subgraphs must
be the same(see base case), there must be at least one edge
e′1 = (u1, v

′
1) ∈ D∩E(g′) that g and g′ also do not agree on.

Since the in-degree of v′1 must also obey this, there exists an
edge e2 = (u2, v

′
1) ∈ D ∩ E(g). In the case that g = gCi,Cj

for Ci 6= Cj , we have that all 4 nodes mentioned here are
distinct. It could however be the case, that the edge (u2, v1) ∈
E(g), which would prevent the edge flip. This implies that
degin

g (v1) > degin
g′(v1) and there exists another node x and an

edge (x, v1) ∈ D ∩ E(g′). If this edge flip is also prevented
by a edge, then the in degree of v′1 is again higher and we find
another node. Since this cannot continue forever, as the graph
is finite, we eventually find a node that we can use as u2,
i.e. where the edge flip is allowed. Performing an edge flip
on e1, e2 yields the new edges (u1, v

′
1), (u2, v1). Thus after

this flip, e1 has been transformed into e′1, so the graphs now
agree on one more edge compared to before. It is possible
that (u2, v1) ∈ D∩E(g′), in which case the edge flip relieved
two disagreements simultaneously. In any case, |D∗| ≤ 2(n−
1), where D∗ is the disagreement set between the new graph
created from G by the edge flip and G′.

However, in the case that g is not bipartite, it may be the
case, that u2 = v1. If we can choose any other configuration to
get 4 distinct nodes, then we do so and treat it like the previous
case. If we cannot, then there is no (v1, x) ∈ E(g′) and no
(x, v′1) ∈ D ∩ E(g) for x 6= u2. Then, u1, v1, v′1 constitute
a directed triangle in g and g′ with opposite directions. For
this corner case, we need a new move, that turns one into the
other, decreasing |D| by 6, i.e. |D∗| ≤ 2(n− 3).

We have now shown that all graphs that have the same CR
colors of depth d are a possible output of algorithm 1. Or in
other words, the markov chain is connected. It is also aperiodic
as choosing e1 = e2 is allowed and introduces a self loop.
Finally, the Markov chain to sample the subgraph gCi,Cj for
any fixed Ci, Cj is row stochastic, since the number of edge
pair choices (= number of possible edits) is the same for all
allowed subgraphs. Note that some of the possible edits may
be invalid and make up a self-loop. Finally, every edit can also
be reverted, meaning the markov chain is symmetric and thus
doubly stochastic.

B. The ERGM used

In this work we used an ERGM with probabilities

p(G̃) ∝ exp(−100 · θ|ΓPR(G̃)− ΓPR(G)|)

The parameter θ controls how strongly graphs should resemble
the PageRank score of the original graph G. We sampled using
the dyad flip Markov chain.
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