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Abstract—In deep active learning, it is especially important
to choose multiple examples to markup at each step to work
efficiently, especially on large datasets. At the same time,
existing solutions to this problem in the Bayesian setup, such
as BatchBALD, have significant limitations in selecting a large
number of examples, associated with the exponential complexity
of computing mutual information for joint random variables. We,
therefore, present the Large BatchBALD algorithm, which gives a
well-grounded approximation to the BatchBALD method that aims
to achieve comparable quality while being more computationally
efficient. We provide a complexity analysis of the algorithm,
showing a reduction in computation time, especially for large
batches. Furthermore, we present an extensive set of experimental
results on image data both on toy datasets and larger ones such
as CIFAR-100.

Index Terms—deep active learning, batch acquisition, computer
vision

I. INTRODUCTION

In supervised machine learning tasks, the quality and volume
of the training data play essential roles in achieving high
performance. However, the process of data collection and
labeling is often expensive, requiring a huge amount of time and
resources [18]], [22]]. Therefore, active learning (AL) techniques,
that choose the most informative samples for model training,
minimizing the collection and annotation budget, are crucial in
practice [20]. Active learning methods are successfully applied
to the various types of data: tabular [28]], image [7], text [25],
audio [21]], video [29] and others. Especially, AL can be helpful
in the case of real-world data which requires involvement of
subject-matter experts, namely medical [3]] and manufacturing
data [16].

In this work, we consider a pool-based active learning
problem for an image classification task. It is assumed that there
is a small amount of labelled data and a big unlabeled pool
to select an object for annotation from. Selection procedure
is carried out according to a certain criterion that is usually
based on a so-called acquisition function. Acquisition function
is maximized over the most informative samples in terms of
model uncertainty measure or expected error. For example,
as an acquisition function one uses variance reduction [9],
entropy [23]] or mutual information (also known as BALD) [10]
maximization and others. Then, selected samples are labeled
and added to the already labeled dataset for further training.

At each step of the active learning cycle, one or several
pool samples can be selected for annotation. By selecting one
sample to label at each step, one can greedily assemble an
optimal set of labeled data for training. However, with a large
number of objects, it is computationally inefficient to choose

only one object in each acquisition time period. In this case, it
is better to select multiple objects from the pool at each active
learning step.

Nevertheless, an acquisition of multiple objects at a time,
leads to the problem of selecting similar training samples
and data redundancy. Thus, the design of the BALD criterion
does not take into account the interaction of samples within a
batch, which results in the selection of similar samples. The
inefficiency of the training dataset leads to model performance
degradation and excessive use of resources. One of the state-
of-the-art methods that partially copes with this problem is an
extension of the BALD method, namely BatchBALD [11]. Its
idea is to calculate mutual information in a batch manner using
multiple network outputs as a joint random variable. This ap-
proach allows one to account for interactions between samples
in a batch manner, preventing the selection of similar samples,
but greatly increasing computational time and complexity.

In this work, we propose a new active learning acquisition
function, Large BatchBALD, which is an approximation of the
BatchBALD and is designed to deal with the weaknesses of
the original, namely its high computational complexity. The
main contributions of this work can be summarized as follows.

e We propose an active learning algorithm called Large
BatchBALD, which is an approximation of the Batch-
BALD method. It is designed in the way that prevents
taking similar images in one batch, the crucial property
of BatchBALD. The details can be found in Section [

e We analyze the complexity of the proposed algorithm
(Section [[I-E), showing a reduction in running time
compared to the original BatchBALD, especially for large
batches.

o We provide an extensive experimental study showing the
improved efficiency and successful performance of Large
BatchBALD in active learning tasks compared to state-of-
the-art approaches, see Section

o We additionally study how the stochastic sampling can
help to further improve the results compared to the greedy
approaches, see Sections [[I-D] and [[TI}

II. METHODOLOGY
A. Problem setting

In this paper, we consider a pool-based active learning
problem statement for an image classification task. This
implies that we have a small amount of labelled examples
{2, ¥}, € Duyain, yi € {0,1,...,C} and a much larger pool

of unlabeled data {xj}jy:p"{' € Dpoo. We consider a Bayesian



model M with parameters 6 ~ p(0 | Dyain). Here conditioning
on Dy.i, emphasizes that the model was trained using this
dataset. Acquired samples from Dy, are selected as the ones
that maximize a so-called acquisition function A:

x* =arg max A(x | M, Dyain)- (D

€ Dpool

It maps each example from the unlabeled pool to a numerical
value using some information criteria or uncertainty measure.
Acquired samples from the pool are selected for oracle labelling,
and then these examples are added to the existing labelled data
Dirain. The target model is then trained on the currently labeled
amount of data. This procedure is repeated throughout the
active learning cycle and continues until the total budget of
the algorithm is exhausted. At each step of the cycle, the
acquisition function is recalculated. The quality of the model
is evaluated on the test data Dy and compared at each step
of the AL procedure.

There are various acquisition functions applicable in active
learning. One of the basic ones is the Least Confident score:

Alx) =1~ lgleagp(y =c|x0), (2)

where 6 are model parameters. That is, the choice of examples
is based on whose likelihood the model is most uncertain.

In this work, we use both MC-dropout and deep ensembles
approaches to estimate for the more accurate capturing of
uncertainty for deep neural networks. In the case of deep
ensembles, the same model with different initialization forms
an ensemble, in the case of MC-dropout, dropout on inference is
used to obtain a set of networks with different parametrization
using different dropout masks. Formally, the final prediction
can be written as follows:

k
Py =c|z, D) =7 > ply=clz,0;), (3
=1

=

where 6; is the model parameters for the i-th model and & is
the number of models in a set. It can be either the number of
network initializations in the case of deep ensemble, or the
number of forward passes in the case of MC-dropout. Both MC-
dropout and ensembling can be seen as instances of the general
Bayesian formulation with model parameters being samples
from the posterior distribution: 6; ~ p(0 | Dyyin), ¢ = 1,..., k.

While one can directly use the averaged predictive distri-
bution (3) in least confident acquisition function (), it might
be beneficial to extract some additional information from the
posterior on top of the predictive mean. Next, we will focus
on the family of entropy-based acquisition functions that allow
to achieve that.

B. Entropy-based acquisition functions

1) Entropy: The entropy maximization criterion is also one
of the basic ways of selecting examples for active learning:

H[Z/ | x, Dtrain]
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It again uses the predictive mean only by looking on the entropy
of this distribution. This criterion is maximized for samples
having similar probabilities predicted for the different classes.
2) Bayesian Active Learning by Disagreement (BALD):
Starting from the entropy, one can construct criteria that look
on the disagreement between the models in the Bayesian
framework. The original BALD criterion [[10] is formulated as
the conditional mutual information I(6,y | 2, Dy.in) between
unknown (unobserved) output y and latent parameters 6,
conditioned on input variable z and observed data Dj.,. Note,
that the BALD criterion can be written in the y-space of mutual
information and expressed as follows:

IBALD(y; 9) = H[y ‘ xZ, Dtrain]_Eewp(ﬂD[mm) [H[Z/ | x, 6]]7 (5)

where H[y | «, Dyan] is an entropy of model output y
conditioned on data sample x and train data, H[y | z,0] is
an entropy of model output y conditioned on data sample x
and sampled model latent model parameters 6 ~ p(6 | Dyin)
which are integrated out by the expectation Eg- ;9| D). In
other words, it calculates the difference between the entropy of
marginal predictive distribution and posterior mean conditional
entropy. BALD intuition is that it seeks for data samples in
whose outputs y the model is the most uncertain (leads to high
marginal entropy), while being certain about individual model
parameters (leads to confident predictions but highly diverse).
In general, a continuous case BALD acquisition function is
expressed as a KL divergence between p(y;;6) and p(y;)p(0):

i;(g
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In terms of batch active learning, when an acquisition batch
consists of b > 1 data samples, then the BALD score is the
sum of individual scores for each of the b items:

b
Igarp (Y1:6:0) = Z I(y:; 0).

=1

)

This approach has a serious drawback, namely, it does not
take into account pairwise interaction of the data samples in
batches. As a result, BALD tends to acquire a batch of similar
examples leading to suboptimal performance.

3) BatchBALD: To diversify samples in a batch, the Batch-
BALD acquisition function was proposed [[11]. It is formulated
as mutual information between a batch of observations and
latent parameters, and can be expressed as:

Igg(y1:650) = Hlyr, ...,y | 21,
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where y1., = y1,...,Yp is a joint random variable, b is
the batch acquisition size. BatchBALD calculates mutual
information between model output and model parameters but
in a batch sense, that is, considering inter-variable correlation
and taking a batch of outputs as a joint random variable. It
avoids multiple accounting of variable interconnections and
provides diverse data sampling. In terms of the continuous



general case, it is similar to BALD with the difference that
p(y1.p) is used instead of p(y;):
(yl :bs 0) RAC2 TRV
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While accounting nicely for the correlation between observation,
BatchBALD criterion is often computationally expensive,
especially for large batches (see Section for the detailed
complexity analysis). In the next section, we are going to
provide its more computationally feasible alternative.

C. Large BatchBALD

One of possible generalizations of mutual information is a
total correlation [31]] between b random variables which, by
definition, is calculated as:

C(y1:b)=/ P(y1:) log

y1:b

I(y1:050 y1.5d6.  (9)
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It measures inter-variable dependencies, always positive and
is nullified if and only if all the variables are independent of
each other. Note that its form doesn’t include model latent
parameters 6.

Another possible form of total correlation [26] is an
expression that uses mutual information of all possible variable
subscripts:

b
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The main idea of introducing of total correlation in this work
is that it is exactly equals to the difference between BALD
and BatchBALD acquisition functions:

ylb an

b
> I(yi0) — Iss(y1::0) — Clyrs) = 0, 12)
i=1
where C'(y1.5) = C(y1;y2; - - . ;yp) is the mutual information of

b random variables (i. e., generalization of mutual information
of two variables), b is an acquisition batch size. A complete
derivation of equation (I2)) can be found in the Appendix [VI-A]
Calculation of mutual information of all possible subscripts of
data outputs is significantly time-consuming. Nevertheless, it
can be neglected using total correlation approximation just by
pairwise mutual information components:

ZI yuyJ

i#]
In this sense, BatchBALD is equal to the difference between
BALD and total correlation. Using the approximation of total
correlation, we can write:

ZI (yi,0
~ ZI(%,@)
i=1

y1 b) (13)

Isp(y1::0
(14)

Note, that there are no latent parameters 6 in the joint mutual
information C'(y1.5). That means, that the difference, between
BALD mutual information taking into account pair interactions
and without it, is exactly the same as how the components y;
are correlated between each other. We call this approximation

Ips(yrs0) == S0 i I(y:,0) — Z Zf(yz»yg) as Large

BatchBALD (LBB). Importantly, LBB 1s significantly less
computationally expensive compared to BatchBALD, see the
complexity analysis in Section [[I-E

D. Stochastic acquisition function extension

While BatchBALD and its modifications are efficient in

obtaining diverse batches, one can propose alternative strategies
to achieve a similar effect. One natural way is to step aside from
greedy sampling and introduce stochasticity into the procedure.
The idea is to convert the resulting scores to a distribution
and then sample from it. In this case, we raise the scores to
some power o and normalize the resulting values. Thus, the
probability of selecting a sample x with an acquisition function
equal to A(z) from the unlabeled pool Do can be written as
A%(z)
A (i)
In this work we consider such extension for the LBB and
BALD algorithms, and call them Power Large BatchBALD
(PLBB) and PowerBALD (PBALD) [[12]. Thus, in the case of
PLBB acquisition function is A(x) = I gg(y;#), and in the
case of PBALD it is A(z) = IgaLp(y; @). Here y is the model
output on the sample x and 6 is the vector of model parameters.
The magnitude of the power « in this case determines how
much of a stochastic effect is present: with a smaller power
the random effect is greater, with a greater power examples
with larger scores are even more likely to be taken, and the
random effect appears less.

Pa(z) = 5 (15)
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E. Computational complexity

In this section, we discuss the computational complexity for
the BALD, BatchBALD, and Large BatchBALD algorithms,
see Table [ We also give some intuition how LBB, using BALD
and pairwise mutual information, can significantly improve the
complexity of the BatchBALD algorithm, especially noticeable
in the case of large batches.

1) BALD: BALD time complexity is O((b+k)-|Dpoor|) and
consists of calculating for each element of Dp,o 2 components:
O(b - |Dpool]) is a cost to compute predictive distribution and
O(k - [Dpool]) is a cost to compute entropies in output space.

2) BatchBALD: To compute the exact joint entropies, we
have to compute all possible configurations of the p(y1, ..., ys)
and evaluate by averaging over p(y1,...,ys | #). To compute
approximate joint entropies, we have to sample possible
configurations of the y; from p(y1,...,ys) stratified by p(0)
and evaluate p(y1,...,ys) by averaging over p(y1,...,ys | 0).

BatchBALD complexity is O(b - ¢- min{c®, m} - | Dpool| - k),
where c is the number of classes, k is the number of MC-
dropout samples, and m is the number of MC-sampled



configurations of y1:5—1, |Dpool| is @ volume of unlabeled pool
data. It can be described as follows. On each of ¢ =1 : b the
acquisition steps, a new candidate ; with p(y; | #) from | Dpool
is greedily selected to the already formed batch p(y1.,—1 | 6)
of elements x1.;_1. This batch is already calculated and stored,
elements x.;,_; are fixed, so the task is to calculate joint
entropy between a new added point z; and an existed batch
in a one by one manner. In exact (means based on given
draws of 6) joint entropy scenario, all possible combinations
y1.i—1 can be calculated exactly as ¢t meaning c possible
classes of each of ¢ elements in a batch. As for approximated
joint entropy scenario, if ¢ value is big (in BatchBALD
paper it is assumed after 5 acquired elements) then p(yq.;—1)
of y;.;—1 is approximated using m MC-samples. In both
cases, joint probability p(y1,...,y;) is calculated by averaging
over p(y1,...,¥; | 8) (i. e., to find a probability density
marginalizing over #) with k¥ MC-dropouts of 6. So, batch is
selected in linear time, although joint probability still requires
a lot of computation resources both in exact and approximate
setting.

In a naive setting, complexity is O(c® - [Dpoot]® - k) and
can be described as follows. For every element of a batch of
size b, from a data pool |Dpeol| With ¢ possible classes, a new
data sample is searched as a maximum of difference between
joint entropy and conditional joint entropy. Difference with
efficient implementation is that in efficient option x1.;_1 is
fixed and varies only z; while in naive implementation all
x1.; vary. p(y1,...,ys) is also calculated by averaging over
p(Y1,- -,y | 8) with & MC-samples.

F. Large BatchBALD

Large BatchBALD time complexity is equal to the sum
of BALD complexity and total correlation approximation
complexity. BALD complexity, as noted above, is O((b +
k) - |Dpool]). Total correlation approximation complexity

D, - | Dpool — 1
is 0 (2- Dol Byes — 1 -k-c) — O(|Dpoall® - k- ).
That is, it consists of two tensor multiplication operations

with dimensionality [n,k,C] x [n,k,C] = [n,n,k,C] and
[n,C] x [n,C] = [n,n,C], where n is a processing batch size,
see Appendix [VI-B|for details. It means, that Large BatchBALD
complexity is O(|Dpoot|? * k - ¢ + | Dpoot| - (b + k).

The intuition of this method lies in the following. The given
asymptotics denotes a linear dependence on the size of the
batch, as in BALD. Thus, Large BatchBALD scales to the
size of a batch consisting of hundreds of elements without
significant costs. At the same time, the original BatchBALD
algorithm works in a reasonable time only with batches
consisting of tens of elements due to the calculation of mutual
information of a joint random variable. In general, adding
large batches in an active learning problem is a common
practical scenario. With a huge pool of unlabeled data, adding
a small amount of data up to a few tens will have little
effect on the performance of the final model. Thus, it is
computationally more efficient to be able to acquire large
batches for annotation and training. Furthermore, LBB works

equally well with batches of tens of elements and already shows
computational superiority in comparison with BatchBALD, see
Table [

III. EXPERIMENTS

For all datasets, the initial training set is balanced with
respect to the number of images of each class. All datasets with
the repetition option use each incoming image more than once
with Gaussian noise applied, in our case we take 4 occurrences
of each image in the datasets.

After each addition of new samples to the training set,
the network is trained from scratch. All models use Glorot
initialization. The parameters of MC-dropout experiments are
similar to the [11] settings, deep ensembles experiments are
performed with an ensemble of 5 models.

We measure the accuracy of the model prediction on a test
dataset, depending on the amount of training data obtained
by different algorithms. All results given are obtained as the
average of the 5 runs, and the corresponding standard deviation
is shown in the figures as filled error bars.

A. MNIST and its variations

1) Experimental settings: The first group of experiments is
MNIST extensions: MNIST [15]], Repeated MNIST (RMNIST)
[11]], Fashion MNIST (FMNIST) [32]. MNIST is a standard
machine learning dataset suitable for active learning that
consists of handwritten digit images, including 60, 000 images
from 10 classes. RMNIST is an extension of the MNIST dataset
in which each image is repeated several times with a small
Gaussian noise applied. FMNIST is a fashion product dataset
containing 70, 000 images of 10 classes.

Model architecture for MNIST, RMNIST and FMNIST
datasets is taken similar as in [[11] for the MC-dropout uncer-
tainty case. For experiments with deep ensembles, the same
architecture was adapted to use multiple initializations of the
same network to form an ensemble. Comparing deep ensembles
with MC-dropout, ensembles are more time-consuming than
MC-dropout. While MC-dropout requires multiple forward
passes on inference of the same network, for ensembles one
needs to fully train multiple networks. Nevertheless, with deep
ensembles, better model quality can be achieved due to better
calibration of the resulting models [2]. On the mentioned
datasets, we compared the performance of the AL algorithms
for both ensembles and MC-dropout uncertainty estimates on
acquisition batches of 10 images.

2) Ensembles: The results of the experiment on the MNIST
dataset are shown in Fig. [Ta] The Large BatchBALD algorithm
is slightly better than the BALD algorithm, and as a Batch-
BALD approximation it is quite close to the original. As for
the LBB and BALD extensions, namely PLBB and PBALD,
they dominate among other algorithms, even outperforming the
BatchBALD algorithm in both the ensemble and MC-dropout
cases.

In RMNIST experiments, see Fig. [Tb] BALD takes many
similar images that do not introduce significant diversity into
the training dataset, which is reflected in a loss of quality
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Table I: Complexity of BALD-based algorithms.
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Figure 1: Test accuracy over acquired images, uncertainty estimates are based on deep ensembles. Datasets: (a) MNIST.
(b) RMNIST. (c) FMNIST. LBB shows better performance than BALD, and the PLBB and PBALD extensions using added

stochasticity lead among other algorithms.

Accuracy, RMNIST, batch 10

80Accuracy, FMNIST, batch 10

90
oy o 370
€30 §SO § — PLBB
3 3 3
9] PBALD 0 —— PLBB 3] —— PBALD
< — BB £ —— PBALD <UGO — BB
70 BALD — BB —— BALD
— BB —— BALD — BB
—— Rand 60 —— Rand / —— Rand
B
60() 200 400 0 200 400 “)00 200 400

Number of training samples

(a) (b)

Number of training samples

Number of training samples

©

Figure 2: Test accuracy over acquired images, uncertainty estimates are based on MC-dropout. Datasets: (a) MNIST. (b) RMNIST.
(c) FMNIST. LBB is clearly superior to BALD, and by a larger margin than in the case of deep ensembles.

compared to other algorithms. Large BatchBALD, on the other
hand, as an approximation of BatchBALD performs much
better than BALD, taking into account batch interconnections.
It is still inferior to the random baseline at the beginning, but
later outperforming it starting from a few hundred elements. In
turn, PLBB and PBALD, combining informativity proportional
to the LBB and BALD criterion scores, respectively, and the
diversity obtained by sampling from the power distribution,
their performance is quite close to each other and outperforms
all other algorithms. Note, that on a dataset with a large pool,
like RMNIST, and on large-batch experiments, BatchBALD
becomes computationally infeasible.

Regarding the results on the FMNIST dataset, the Large
BatchBALD algorithm shows the best quality compared to
BALD, and the results of its PowerLBB and PowerBALD
extensions are the best among other algorithms, with PLBB
significantly outperforming PBALD, see Fig. This may be

due to the fact that PLBB has the additional data diversity
contained in the LBB algorithm design, while PBALD has
data diversity only due to sampling-driven randomness. Both
mentioned algorithms are better than BatchBALD, which in
turn, together with BALD, has comparable performance and
worse results among competitors.

3) MC-dropout: Comparing the results obtained with MC-
dropout and with deep ensembles, we see that the test accuracy
of algorithms with MC-dropout is lower than with ensembles,
as we mentioned earlier. At the same time, the margin between
algorithms, for example, between LBB and BALD in all the
figures is more clear in the figures obtained with MC-dropout.
Thus, the Large BatchBALD algorithm is significantly better
than BALD, see Fig. [2a] Fig. [2b] Fig. Also, in Fig. 23]
the LBB algorithm even outperforms BatchBALD in quality,
starting from 200 elements in the training set. The BALD
algorithm, however, shows quality comparable to random



selection of samples. Furthermore, in Fig. 2b|and Fig.[2c] BALD
performance is significantly worse than random selection of
samples. Also, on all three figures, power extensions show the
best accuracy among all algorithms. There are also figures for
the bigger batch size of 20, see Appendix for details.

B. SVHN, RCIFAR-10, RCIFAR-100

CIFAR-10 and CIFAR-100 [13] are datasets of color images,
each containing 60,000 images consisting of 10 and 100
classes, respectively. Repeated extensions of CIFAR datasets
involve repeating each of the images multiple times in the
dataset with a Gaussian noise applied, namely 4 times in our
case, which increases proportionally the total size of each
dataset. SVHN [|17] is a Street View House Numbers dataset
containing 70, 000 images.

As a model, we used ResNet-18 [8] architecture with SGD
optimizer with momentum = 0.9, weight decay = 0.0005,
learning rate = 0.05. As a learning rate scheduler, we used
MultiStepLR with gamma = 0.1, and milestones = 25, 40.
The network was trained for 50 epochs keeping the model that
showed the best quality on validation, the validation sample
size consists of SK examples.

Regarding the SVHN dataset, in the Fig. [3c| calculated for a
batch size 50, the LBB algorithm shows superiority over the
BALD algorithm and the random baseline, while the BALD

algorithm is inferior to the random baseline up to 2K examples.

Additional randomization significantly improves the BALD
displayed in the better performance of the algorithm, as shown
by PBALD. At the same time, LBB is as good as, and in
some places slightly better than, the PBALD algorithm without
additional randomization. The leader among all algorithms is
the randomized version of LBB, the PLBB algorithm.

Dataset Repeated CIFAR-100 (RCIFAR-100) is sufficiently
challenging for the task of active learning due to the large
number of classes and image repetitions, which increases the
initial volume by 4 times. Moreover, such a dataset involves
taking examples in large batches to get good performance
in a reasonable amount of time. Note, that while the results
based on RCIFAR-10, see Fig. [3a, show only slight superiority
of the LBB algorithm over the BALD algorithm, on a more
complex dataset like RCIFAR-100 the differences are already
clear, see Fig. [3b] It shows that Large BatchBALD is more
successful in quality than BALD and random baseline. As for
the randomized versions of LBB and BALD, namely PLBB
and PBALD, they improve the results of the original, with
PLBB dominating in quality among the other algorithms on
this dataset. For experimental results on the mentioned datasets
for a larger batch sizes, see Appendix

C. Algorithm runtime comparison

We present numerical execution times for the considered
algorithms, namely BALD, PowerBALD, BatchBALD, Large
BatchBALD, and Power Large BatchBALD, see Table [II| that
is based on MNIST dataset. Execution results are obtained
with deep ensembles constructed using a small convolutional
network. The initial pool consists of 20 images, and the

unlabeled pool contains 49, 880 images. Note that these results
also support the claim that LBB, being an approximation of
BatchBALD, is tens of times faster. Moreover, this difference
becomes even more noticeable as the batch size increases,
which can give a gain of tens of times. Thus, when working with
batches of hundreds of items, it is evident that the calculation
of the Large BatchBALD acquisition function is more feasible
than that of the BatchBALD method.

IV. RELATED WORK

Uncertainty estimates in deep learning are often associated
either with MC-dropout [6] or deep ensembles [14]]. In the case
of MC-dropout, one samples the dropout mask on inference
to get an ensemble of models differently parameterized. In
the case of deep ensembles, one trains a single model with
different weight initialization. Speaking of classification, in
both scenarios, the final prediction is the average of the softmax
vectors from all the models in the ensemble. In the work [2]
authors demonstrate the superior performance of ensembles
over MC-dropout in image classification tasks. Nevertheless,
we tested both of the approaches for dealing with uncertainty.

One of the most applicable baseline algorithms for ac-
tive learning is Bayesian Active Learning by Disagreement
(BALD) [10]. Its acquisition function is computed as mutual
information between model output and its latent parameters.
That is, BALD tries to find those examples in which the
different models disagree, while each of the models is confident
in its prediction. This approach is quite efficient when taking
one example at each step for training.

In practice, with a large pool size, it is unprofitable to take
a single example or even small batches, so it is important to
be able to take batches of informative examples at each step
of the AL loop. In practice, the top-k approach is most often
used to take more than one example in the AL loop, where
each step takes k& examples with the highest values of the
acquisition function. This approach has a serious drawback,
namely, it does not take into account pairwise interaction of
the data samples in batches that leads to acquiring a batch of
similar examples and resulting performance degradation.

One possible solution is a batch modification of the BALD
algorithm called BatchBALD [11]]. The idea is to treat the
mutual information in a batch manner as between a joint
random variable (i. e., set of model outputs) and model
parameters. In this scenario, points are added one at a time in a
greedy manner, and the total mutual information is recursively
recalculated. The diversity of acquired samples comes from
accounting for the interactions in the batch between outputs.
Nevertheless, BatchBALD has a significant drawback, namely,
it takes a lot of working time [[12]. In the original BatchBALD
work, the standard choice is to take a batch of 10 elements,
since complexity grows exponentially with batch size due to
the joint entropy calculation. In practice, it is calculated directly
for the first 5 samples in the batch, and the rest are sampled
using MC-dropout.

Another way for diversification is presented in the already
mentioned article [[12]]. Its authors get a diversity of chosen
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Figure 3: Test accuracy over acquired images, uncertainty estimates are based on deep ensembles. Datasets: (a) RCIFAR-10.
(b) RCIFAR-100. (c) SVHN. LBB outperforms BALD, and also shows results close to the leading methods based on power
distribution, namely PLBB and PBALD.

Batch size BALD PowerBALD BatchBALD Large BB Power LBB
10 5.04+0.51 | 5.29 £ 0.49 268.9+10.37 | 18.18 +1.22 | 20.13 +2.61
20 5.13+0.43 | 5.93+1.43 | 838.85+98.22 | 20.06 £5.31 | 18.56 + 2.27

Table II: Algorithm runtime comparison. MNIST dataset, unlabeled pool of 49, 980 images, uncert. estim. with deep ensembles.

examples at the expense of the stochasticity of the acquisition
function. Their idea is to get scores from some algorithm, such
as BALD, and then translate those scores into a distribution.
Sampling from such a distribution, we get an acquisition
batch. Thus, if we take all the scores obtained with BALD,
raise to some power, normalize, and then sample, we obtain
the PowerBALD algorithm, which is one of the comparative
baselines in this paper. The basic idea is that a randomized
sampling strategy is better than a greedy one, requires the same
amount of time, and partially overcomes the data redundancy
bottleneck.

To achieve the best quality of AL algorithm, it is often
useful to focus only on uncertainty that is directly related to
the quality of the algorithm. Thus, the authors of MOCU-based
algorithms [33|] propose to minimize only the classification
error uncertainty as an acquisition function, taking into account
the posterior, rather than the overall uncertainty, in contrast to
BALD. As a result, the authors do not increase the probability
of an already guessed classes, but extract controversial samples
on the classification borders, taking into account the posterior.
A similar idea was considered in the paper [4] where the
authors proposed an acquisition function in a one-step look-
ahead manner for regression on Gaussian processes [[19]. The
idea is to choose a new point to add so that the average variance
over the space is reduced.

Another important issue in active learning, affecting the
performance of the model, is the diversity of acquired data
samples. Combining a Bayesian network and a Gaussian
process with a known covariance function, the authors in [27]
propose to obtain diverse data samples from the acquisition
function as the maximum variance of the Gaussian process.
Also, since the variance of the Gaussian process does not
depend on the output of the network, each time sampling a

new point changes the total variance, which eliminates the
need to retrain the network at each step. Another design of the
acquisition function, which takes into account the diversity of
samples, is based on the geometric properties of the data [24].
The idea is to add images with the greatest distance from the
training set to find data that is still poorly represented by the
training set.

Another natural but computationally expensive way to
introduce diversity of AL samples into a training set is to
use clustering. The authors in the paper [5] demonstrate an
efficient data sampling with huge batch sizes by selecting
samples from hierarchically clustered data in an ascending
volume manner. Another current state-of-the-art work [[1]] uses
k-means++ to achieve diverse acquired samples, along with an
acquisition function built on the value of loss gradients relative
to model parameters as the value of potential model change. In
the work [30] the authors suggest using KNN classifier as the
output layer of the network instead of softmax, due to better
generalization ability to the unknown space.

V. CONCLUSIONS

To summarize, we propose the Large BatchBALD algorithm
as an approximation of the BatchBALD method, using the
BALD acquisition function and pairwise mutual information
of model output components. The algorithm has comparable
quality to the original method in terms of efficiency in avoiding
taking similar images while computing the acquisition function
several times faster, especially in the case of large batches.
Thus, this active learning algorithm balances the uncertainty
and diversity of the acquired samples and significantly reduces
the acquisition time compared to the original BatchBALD. The
resulting method is shown to be active for batch active learning
in application to modern image datasets.



VI. APPENDIX
A. Main property proof
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which is an exact statement that was presented in the beginning.

B. Pairwise mutual information calculation

Here we give an explicit formula for calculating the ap-
proximation of the total correlation C'(y;;y;) through pairwise
mutual information:
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where i # [, § is a sample from p(y), & is either the number
of forward passes in the case of MC-dropout, or the number
of models in an ensemble in the case of deep ensembles.

C. Additional results for bigger batches

Experimental results on a larger acquisition batch for the
MNIST dataset are shown in Fig.[da] Note that LBB and BALD
have comparable accuracy here, as do PLBB and PBALD.
Power extensions also dominate among other algorithms.
Experiments for RMNIST with larger acquisition batch size,
see Fig. [4b] Here we observe a similar picture with respect
to LBB and BALD, as is that their extensions PLBB and
PBALD show the best quality among all algorithms. Similar
conclusions can be drawn from the FMNIST dataset Fig.
with acquisition batch size equal to 20. For MNIST, RMNIST,
FMNIST figures on batch 20 with MC-dropout see Fig. [5a
Fig. [5b} Fig. [5c] respectively.

Regarding the size of the batch 100 on SVHN dataset, see the
Fig. Large BatchBALD shows better quality compared to
BALD. In turn, BALD has a similar performance to the random
baseline. On the same figure, the PLBB algorithm slightly
outperforms PBALD on the first few thousand elements, after
which they have similar quality superior to the competitors. The
results for RCIFAR-10 on batch 200 are shown in Fig. [@ Also,
on RCIFAR-100 with a larger batch the Large BatchBALD
algorithm outperforming the BALD algorithm, see Fig. [6b]
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Figure 4: Test accuracy over acquired images, uncertainty estimates are based on deep ensembles. Datasets: (a) MNIST.
(b) RMNIST. (c) FMNIST.
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Figure 5: Test accuracy over acquired images, uncertainty estimates are based on MC-dropout. Datasets: (a) MNIST. (b) RMNIST.
(c) FMNIST.
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Figure 6: Test accuracy over acquired images, uncertainty estimates are based on deep ensembles. Datasets: (a) RCIFAR-10.
(b) RCIFAR-100. (c) SVHN.
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