Learning from Disagreement for Event Detection

Anonymous Authors

Abstract—Using a newly developed model to upgrade a legacy
model is a common practice in machine learning applications.
After the upgrade, it is expected that the new model should
outperform the legacy model in the regions of interest. However,
it is observed that the new model often makes incorrect decisions
on some instances where the legacy model still performs well.
For a binary classification model (e.g., click-through-rate/CTR
prediction model), such undesirable behavior could even occur
in the low false positive region of the receiver operating character-
istic (ROC) curve. Finding the reasons behind this phenomenon
can help business partners in an organization gain confidence in
adopting the new model and help modelers to improve the new
model in future releases. In this paper, we present the ‘“Learning
from Disagreement” framework to understand and improve the
performance of a predictive model. Under the setting of a binary
classification task, this proposed approach focuses on instances
that lead to contradictory decisions between a pair of models at
a given operating point. We perform feature importance analysis
exclusively on these instances, gain insights into the pair of models
without even knowing their inner operations, and offer actionable
feedback for model improvement. We demonstrate the usefulness
of this framework on two real-world event detection datasets.

Index Terms—Learning from disagreement, performance met-
ric, feature importance analysis, event detection

I. INTRODUCTION

Machine learning applications often need to compare the
performance between a pair of models. Considering the fol-
lowing practical example scenarios:

Model refresh and upgrade. A model deployed in pro-
duction needs to get retrained periodically with new data.
Before the retrained model replaces the production model, we
must ensure that the retrained model performs better than the
production model. The need also arises when we upgrade a
legacy model to an advanced (second-generation) model. For
instance, upgrading a logistic regression model to a deep neu-
ral network model. In this scenario, the advanced model will
go through an even more stringent scrutiny process to ensure
the performance improvement justifies the cost associated with
the upgrade.

Third-party score. An organization brings in a third-party
predictive score to enhance or replace an in-house predictive
score. In this case, for proprietary reasons, the details of the
third-party score such as predictive features and algorithms
may never be disclosed. To gain confidence in adopting the
third-party score, the in-house team needs to figure out where
the third party score performs better and where it does not.
They also need to find the reasons behind that, even without
the full knowledge of the third-party’s model.

Model ensemble. We want to leverage scores from two
models to make a final decision. For instance, we can ensemble
risk scores from the legacy model and the advanced model to
determine whether a credit card transaction is legitimate. It is

a well-known fact that ensemble helps improve model perfor-
mance, but ensemble can be costly to deploy [1] — the system
needs to maintain two models with often different features and
model architectures, not to mention other challenges such as
score latency and memory footprint. In this scenario, we need
to present a very strong case to convince our business partners
or clients when the ensemble will work better and why.

In these example scenarios, it is observed that the “new”
model often makes incorrect decisions on some instances
where the “old” model still performs well. For a binary
classification model (e.g., CTR prediction), such undesirable
behavior could even occur in the far-left corner of the ROC
curve, where the “new” model is supposed to prevail. Finding
the reasons behind this phenomenon can not only help business
partners in an organization gain confidence in adopting the
“new” model, but also help modelers to improve the model in
future releases.

However, it is a nontrivial task to reveal why one model
makes incorrect decisions on some instances where the other
one does not. A number of approaches have been proposed
to understand the reasons behind a model’s prediction, among
which the representative methods are LIME [2] and SHAP [3].
However, both LIME and SHAP are designed for a single
model and do not help disclose prediction discrepancies from
two models. Several recent works have explicitly tackled
model discrepancies in a research setting. For instance, Marx
et al. [4] formalize the problem as integer programming by
constraining the models to be linear. Renard et al. [5] learn
a graph connecting the training instances to discover discrep-
ancies between models. Although mathematically elegant and
performing well for small datasets, they are hard to scale.
Also, while these methods raise awareness of the problem,
they do not provide actionable insights into how discrepancies
can be leveraged to improve model performance. Futher, these
methods only address certain aspects of the problem (e.g.,
how to measure discrepancies, how to locate discrepancies,
etc.); they do not provide an end-to-end operational solution
for practitioners.

Our contributions: Motivated by the aforementioned busi-
ness needs and challenges, we present the “Learning from
Disagreement” (LFD) framework (refer to Fig. 1), to assess,
understand, and improve the performance of a predictive
model. The core of LFD is to work on a pair of models, with
one model serving as the mirror of the other model. LFD
treats the pair of models as black boxes without the need of
knowing their inner details. It aligns two predictive scores,
ensuring both are at the same scale and thus comparable (Sec.
III-B). It is focused on instances that lead to contradictory
decisions between the pair of models at a given operating

Model A

Features

Learning

T 1,
- itiv
Prediction osttives
Score

Algorithms

Score
Alignment

Prediction
Score

jutog Sunerodo

Learning
Algorithms

False I~
Positives

Model B

Fig. 1.

point, narrowing down the problem to a much smaller scope
(Sec. II-C). It uses a new performance metric tailored for the
pair of models, capturing their relative predictive strengths and
weaknesses at the operating point (Sec. III-D). Equipped with
a simple but effective feature importance analysis algorithm
(Sec. II-E), LFD leverages the most precious knowledge from
domain experts, in the form of oracle features, to help business
partners and modelers gain insights into the predictive model
and thereafter improve its performance. We demonstrate the
usefulness of this framework on a public CTR prediction
dataset and an in-house transaction anomaly detection dataset
(Sec. IV). This framework should be particularly useful for
practitioners in large scale predictive modeling problems.

II. DESIGN CONSIDERATIONS AND SOLUTION PATHS

The goal of LFD is to provide an operational framework
that is easy to use and able to provide users with interpretable
and actionable insights. With this in mind, the design of LFD
prioritizes practical utilization over mathematical complexity,
reflected in the following four design considerations and
proposed solutions (refer to Fig. 1).

Aligning two predictive scores. When working on highly
unbalanced datasets such as CTR prediction or transaction
anomaly detection, it is a common practice to down-sample
non-events (negative samples). After the model is trained,
prediction scores are aligned or calibrated to reflect the true
population probability. This can be done by adjusting the
prediction score in the down-sampling space using a Bayesian
formula [6] or isotonic regression [7], which requires obtain-
ing the precise sampling rate. We could use these methods for
each of the models in the pair to arrive at two aligned scores
respectively. However, this pair of models are often created by
two different teams and each team may apply quite different
sampling strategies. Also, one model could come from a third
party. In these scenarios, it is hard to get precise sampling rates
to do the alignment. To overcome this burden, we propose a
new score alignment algorithm in Sec. III-B to align the two
scores without resorting to the sampling rate. The key idea is
that instead of making the two scores match the population

Insights +: Succeed, -: Fail

Events

B A+, B+: Both A & B succeed (7P,)
B A+, B-: A succeeds, B fails (7P,)
B A-, B+: A fails, B succeeds (7Pp)

No-Events

B A-, B-: Both A & B fail (FP,)
A-, B+: A fails, B succeeds (FP,)
B A+, B-: A succeeds, B fails (FPp)

Insights

An Overview of the LFD framework. The framework’s details are explained in Sec. III.

probability to make them comparable, we do score alignment
using one model’s score against another (i.e., one model serves
as the reference). Although simple, this algorithm provides a
flexible mechanism of aligning two predictive scores across
a range of commonly used metrics in the industry such as
percentage of instances to work on, catch rate, and false
positive ratio.

Working on instances at a given operating point only.
In a real production system, there is always an operating
point or score cutoff involved. For instance, in a transaction
anomaly detection system the performance assessment of the
model is performed at a specific operating point greater than
0. At the operating point 0, all anomalies would be correctly
identified, but this model would be useless since this comes
at the expense of a huge number of wrongly classified non-
anomalies (i.e., false positives). Therefore, we are not really
interested in whether a model can make correct predictions
on all instances; rather, what we care most about is whether
a model can make correct predictions at a given operating
point." In an ad-targeting system, the operating point is often
at the top 5% of the population [9]. For a transaction anomaly
detection system, the operating point is most likely located at
the far-left corner of the ROC curve. Furthermore, because a
production model is typically used by different clients (e.g., a
transaction anomaly detection model may be used by multiple
credit card issuers), the operating point can vary, depending on
how a client will use the score. The design of LFD should offer
the flexibility of analyzing instances at all possible operating
points. Finally, working only on instances at a given operating
point offers another benefit: the dataset now is more balanced
because events (clicks or anomalies) are no longer the minority
in the high score region [10]. We provide more details in Sec.
II-C on how to work on instances at a given operating point.

Developing a new performance metric. LFD involves a
pair of models so the success or failure of a model is always

'Working only on instances above a given score cutoff is, in spirit, similar
to the idea of “Sliced Analysis” in [8] where the authors point out that working
on full instances is unnecessary and may even mask important effects, such
as quality improving in one area but degrading in another.

compared with another model in the pair. The pair of models
are bundled; a model when paired with a different model could
lead to a different success or failure rate. Conceptually, if the
first model in the pair is weak, but the second model is even
weaker, then the first model would still have a higher success
rate than the second model when making predictions. To that
end, we propose a new performance metric in Sec. III-D to
assess the performance of a pair of models simultaneously,
at any given operating point. This new metric is a relative
metric, tailored for a pair of models. Besides its uniqueness in
coping with a pair of models, this new metric also addresses
the issue of asymmetric importance in classification errors. For
instance, in transaction anomaly detection the consequence of
misclassifying an anomalous transaction as a normal one is
more serious than the other way round.

Gaining insights and offering actionable feedback. The
main motivation of our work is to gain insights, echoing “the
goal of science is not wins, but knowledge” [8]. On the other
hand, the ultimate purpose of gaining insights is to transfer
them as feedback to business partners and modelers. For
business partners, these insights help them better understand
how a model works; and for modelers, these insights help them
find ways of improving the model in future releases. Insights
can be learned and presented using various forms, for example,
revealing problems and suggesting feasible solutions [11],
[12]. In our work, however, we approach this problem from a
feature importance analysis perspective [13]-[15] based on
two reasons. First, features are one of the most important
factors that contribute to the success of a machine learning
model [16]. Second, features are interpretable and actionable,
that is, a business partner can easily grasp the findings and a
modeler can quickly retrain another model with new features.
To facilitate feature importance analysis, we make a nontrivial
improvement to a widely used feature ranking method known
as information value (IV) [17] in Sec. III-E. This improvement
is made after experiencing its flaws while applying the original
IV formula to features having high cardinality. Such features
are quite common in CTR prediction and transaction anomaly
detection.

By following the design principle of utilization over com-
plexity and accommodating the four key considerations, LFD
provides a practical approach to assessing, understanding, and
improving the performance of a predictive model, which is
currently being used across multiple internal teams.

III. THE FRAMEWORK

Fig. 1 presents the LFD framework and we elaborate its
details by answering the following questions: how it aligns two
predictive scores (Sec. III-B); what are the focused instances
of LFD (Sec. III-C); how to evaluate the relative performance
(Sec. III-D); and what insights LFD can offer for model
improvements (Sec. III-E).

A. Dataset

The dataset used by the pair of models (named Model A and
B in Fig. 1) is in the common tabular format (rows: instances,

columns: features). Different organizations may enhance it
by adding their own proprietary information, but some key
raw features should be retained. For CTR, some example raw
features may include user ID, publisher ID, and advertiser
ID [18]. For transaction anomaly detection, some raw features
could be payment card number, merchant ID, and dollar
amount, extracted from ISO 8583 Message [19]. The dataset
should also include label information, for example, whether
an impression has led to a click, or whether a credit card
transaction has been confirmed as fraudulent.

<= <=
=3 =3
o T o T
g g
= Model B =
) [
3])
2 2
) T
o 2 a g
T ® o ©
Qo Q
8 g 8 .
> ®© -3 .
£ . E S f
Q o g ;
< < f
H z :
3 ; : 3 '
- T T - y y y
Scorep Scoreg Sy Sy S,
Low High Low High

Score

Fig. 2. Score alignment algorithm.

B. Score Alignment Algorithm

Instead of trying to make two scores match the population
probability so that they are comparable [6], [7], we perform
score alignment using one model’s score against another,
without the need of acquiring the sampling rate whose precise
value is often hard to obtain. Fig. 2 describes the score
alignment algorithm. The left panel shows that Scores in
model A is aligned to Scorep in model B through ap 4 and
app, the accumulated percentages of instances® from Model
A and Model B, respectively. Here ap 4 and app have served
as a bridge that connects two scores together. The right panel
shows that, when ap, is present from Model A but absent
from Model B, the corresponding score s, in Model B needs
to be calculated via interpolation based on its neighbors (s1,
ap,) and (s2, ap,) using the following formula:

Sy = s2 + (s2 — s1)(apy — ap,) ()
apy — apz

Fig. 3 shows a practical score alignment example from
CTR prediction on the Avazu dataset [20], where Model A
is aligned against Model B. These two models are detailed in
Sec. IV-A. The alignment adjusts the blue curve to the red one,
making the score distribution of Model A similar to that of
Model B (i.e., the red and green curves are almost completely
overlapped).

2This algorithm is flexible and can be easily adjusted based on clients’
requirements. For instance, we could replace percentages of instances with
other metrics such as false positive ratio.

=
o
<)

—e— Model A
—e— Model B
—e— Model A Aligned

I o @
) o S

%lInstances above Cutoff

=)

6 2‘0 4‘0 60 Sb 160
Score Cutoff

Fig. 3. An example of score alignment.

C. Locating Instances Receiving Conflicting Predictions

LFD focuses on instances at a given operating point, that is,
instances scored above a given score cutoff. These instances
are the most critical cases because they are classified as
“events” by a predictive model, either correctly or incorrectly.
In CTR prediction, when an instance is classified as an
“event”, an impression will be presented to the visitor; in
transaction anomaly detection, when an instance is classified
as an “event”, a transaction may be declined automatically or
a case may be created for further investigation.

This is the reason that we have only positives, either true
positives or false positives in Fig. 1, dispersed in six boxes.
The upper three boxes are true positives, and the lower three
are false positives. Without confusion and for convenience,
we denote instances in the upper three boxes as TP sp, TP 4,
TP g, and instances in the lower three as FP 45, FPa, FPp.
Here we use “+” and “-” to indicate a model made correct and
incorrect predictions respectively. In the upper three boxes, the
pairs (A+,B+), (A+,B-), and (A-,B+) represent true positive
instances (events) correctly classified by both A and B, by A
only, and by B only, respectively. In the lower three boxes, the
pairs (A-,B-), (A-,B+), and (A+,B-) represent false positive
instances (non-events) incorrectly classified by both A and B,
by A only, and by B only, respectively.

In LFD, we are only interested in instances that receive
conflicting predictions from the pair of models, that is, TP 4
and T'Pp, which represent disagreements on events (true
positives), and F'P 4 and F'P g, which represent disagreements
on non-events (false positives). TP p and F'P 4p are of less
interest because they are given the same prediction by both
models, either correctly or incorrectly. We investigate instances
from these two types of disagreements separately. For the two
boxes T P4 and T Pp, we assign a label 0 to the instances
in TP 4, and a label 1 to the instances in T'Pg. For the two
boxes F'P 4 and F'Pp, we assign a label 0 to the instances in
F P4, and a label 1 to the instances in F'Ppg. Notice here the
assigned labels have nothing to do with the real class labels;
they are just for the purpose of analysis.

D. Performance Metric for a Pair of Models

The proposed performance metric, dubbed as relative suc-
cess rate (RSR), is specifically designed for assessing the
performance of a pair of models simultaneously. It is defined

in Equation 2 and Equation 3 for Model A and Model B,
respectively:
TPap +TPa+\x FPp

RSRp = 2)
TPap +TPa+TPg+AX (FPagp+ FP4s + FPg)

TPap +TPp +AX FPy
RSRp = 3)
TPap +TPas+TPg+ XX (FPap+ FPas+ FPp)

where A is a discount parameter reflecting a cost for non-
events.?

Because these two equations carry similar information, we
are focused on Equation 2 only. Let’s start with the numerator.
Recall that TP4p are events correctly classified by both
Model A and Model B, so T'P 45 will be counted as a success
for Model A. T P4 are events correctly classified exclusively
by Model A, so it will also be counted as a success for Model
A. FPp are non-events incorrectly classified as events by
Model B exclusively, it will be counted as a success for Model
A as well. To put this another way, for the same F'Ppg non-
events, Model B makes mistakes by scoring them high, but
Model A does not, hence Model A should take credit for not
making mistakes on these non-events; and meanwhile, because
misclassifying a non-event is less serious than misclassifying
an event, this credit should come with a discount, leading
to AXF Pp. The denominator is just the sum of all events
correctly classified by both models and all non-events incor-
rectly classified by both models (with a discount parameter
A). An alternative representation for the new metric is the
relative failure rate (RFR), as defined by RF R =1-RSR 4
and RFRp=1-RSRp for the pair of models, respectively.

We want to emphasize two key points on the new per-
formance metric. First, the metric is not designed to assess
the performance of a single model, although it reduces to
the precision metric (also known as the hit rate) for a
single model (that is, TP /(TP s+\xF P 4) for model A,
and TPp/(TPp+AxFPpg) for model B, where A=1). It
is a relative performance metric. The success or failure of
a model is always measured against the other in the pair.
Second, it takes costs into consideration, addressing the issue
of asymmetric importance in classification errors. This is done
through introducing the discount parameter .

E. Gaining Insights through Feature Importance Analysis

The key to discovering strong discriminative features lies in
understanding properties of the data that distinguish one class
from another [15]. There exist automatic tools [22] to facilitate
this process, but ultimately it is the modeler’s job to come
up with the best features that are predictive, interpretable,
and deployable. Arguably, this is the most important step in
building a predictive model [16]. Deep learning is capable
of discovering powerful features automatically and has shown
remarkable successes on image, speech and text data. How-
ever, in domains like CTR prediction and transaction anomaly
detection, which are at their core an empirical discipline

3For CTR prediction, we assume A=0.0025, that is, a $2.5 cost per 1000
impressions [21]. For transaction anomaly detection, we assume A=0.02, that
is, a $2 cost per $100 purchase [21].

and involve human factors, feature engineering is hard to be
replaced. Indeed, expert-crafted features have played a crucial
role in real industrial production systems [6], [18], [23].

We first create a large feature pool (“oracle” features. Refer
to Appendix B for some example features) based on our
understanding of the data and domain knowledge, and then
investigate which features contribute to the disagreements be-
tween two models at a given operating point using information
value (IV) [17]. We focus exclusively on those instances
that receive conflicting predictions from the pair of models.
The hypothesis is that, if a feature (or a set of features) has
the ability to discriminate those instances, then this feature
must carry some sort of information that is overlooked in
the features used in one of the current two models. In other
words, the available features in the model cannot support
reliable differentiation between classes, and thus cause the
disagreements. Incorporating this new feature into the model
should provide new discriminative power to the model, and
thus help alleviate the disagreements.

We calculate each feature’s IV at a given operating point on
two sets of instances that represent two types of disagreements.
The first set of instances are those in T'P 4 and T'Pp, repre-
senting disagreements on events (true positives), while the sec-
ond set of instances are those in F'P 4 and F'Pp, representing
disagreements on non-events (false positives). Mathematically,
IV is caleulated by IV = Y0 [(&-NE) x woR,],
where C is the number of categories in a feature, E; is
the number of events in category ¢, NE; is the number of
non-events in category ¢, E is the total number of events,
NE is the total number of non-events, and WOUE;, which
stands for weight-of-evidence, is defined by WOE; =
log (%) —log (]X,E . Notice that IV is non-negative because
the signs of %— ~i and WOE; are the same.

WOE and IV provide a simple but powerful way of making
sense of a feature [17], [24]. However, we experience two
flaws when applying them in analyzing the oracle features
we created.* The first flaw is that they treat each category
in a feature equally, ignoring the fact that small counts in
a category can lead to unreliable statistics; and the second
flaw is that IV has a bias toward giving a higher value
for features including more categories (that is, features with
high cardinality). The first flaw is easy to spot and has been
addressed in several previous studies [25], [26]. The second
one is tied to IV and subtle to identify when the cardinality
of a feature is low, as is often the case in features used in
previous studies [17], [25], [26]. The problem is that, because
each summand on the right side of the IV formula can never
be a negative value, adding a large number of elements each
having a small value can potentially lead to a large sum. We
overcome these two flaws by introducing the following new

4A majority of our oracle features are designed to capture interactions
among raw features, and thus tend to have high cardinality. For instance,
the concatenation of User-ID, Site-ID, and Advertiser-ID results in a three-
dimensional feature with high cardinality, where the number of instances in
some categories of the feature is small.

formulas, inspired by the m-estimate method for probability
estimates [25]:

E; +m X —E E
NE; + m x 52Es NE
< Eidmx 5% NE;+mx z¥E_
RIV =3 EYNE EXNE) xRWOE;| (5
=1 E NE

where m is a smoothing parameter. We name these two
formulas as robust weight-of-evidence (RWOE) and robust
information value (RIV), respectively. The idea is that, in each

category of a feature, we add m x TI”;VE “artificial” events and
MX5INE artificial” non-events, given the fact that BINE

and % actually represent event rate and non-event rate,
respectively. The parameter m controls how much RWOFE;
is shifted toward the population average. A large m will make
the first part on the right side of Equation 4 close to log(25),
resulting in a zero RW OE; value (that is, population average).
As the result, this category will not contribute anything to the
RIV calculation of this feature, which effectively mitigates the
bias from the traditional IV formula.’

IV. APPLICATIONS

In this section, we present two real world event detec-
tion applications to demonstrate the usefulness of the LFD
framework. The first application is CTR prediction for online
advertising, while the second is anomaly detection for credit
card transactions.

A. CTR Prediction

The goal of CTR prediction is to predict the probability
that a user makes a click on an ad. The dataset used in this
application is the Avazu dataset [20], which contains more
than 40 million instances across 10 days. Each instance is
an impression and includes 21 anonymized raw categorical
features.

LFD always works on a pair of models. In this application,
the pair of models consist of a logistic regression (LR) model
(Model A) and a graph neural network model known as
FiGNN [27](Model B). Both models use the 21 anonymized
raw categorical features as input, where the LR model encodes
these features using “hash trick” [18], while FIGNN uses a
novel architecture aiming at capturing interactions from these
raw features automatically. The LR model is trained using
an online learning algorithm [28], and its score is aligned
against the FiGNN score using the score alignment algorithm
introduced in Sec. III-B. When preparing data for model
training and testing, we follow a production-like approach:
we reserve a dataset for model testing; this dataset cannot be
touched during model training. More details on data splitting
are discussed in Appendix A. We view LR in this pair as
a simpler model because it is a linear model including only
21 raw features, and view FiGNN as a more advanced model
because it has a more complex structure designed for capturing
feature interactions automatically.

SWe empirically chose m=1000 for both CTR prediction and transaction
anomaly detection in our experiments.

Model Pair: A & B

Model Pair: A & C

Model Pair: B & C

—eo— Model A
—e— Model B

—eo— Model A
—e— Model C

—e— Model B
—e— Model C

20 40 60 80 100 20 40

60 80 100 20 40 60 80 100

Percentage of Impressions above Score Cutoff

Fig. 4. Relative success rates between model pairs (CTR prediction) under different score cutoffs (the horizontal axis).

We create about 200 oracle features based on our under-
standing on the data and domain knowledge, paying close at-
tention to feature interactions, especially interactions between
users and websites (publishers). We perform feature impor-
tance analysis using RWOE and RIV on these 200 features
on two sets of instances receiving conflicting predictions from
this pair of models. The first set of instances are those in
TP, (label 0) from the LR model and those in T'Pg (label
1) from the FiGNN model, and the second set of instances
are those in F'P 4 (label 0) from the LR model and those in
FPp (label 1) from the FiGNN model. Appendix B lists
some top-ranked features by RIV based on these two sets of
instances. We select 70 features to train another LR model
(Model C'), using the same setting as the simpler LR model
(Model A). The 70 features consist of 60 top-ranked oracle
features by RIV, and 10 raw features from the 21 anonymized
raw categorical features for diversity consideration.

Fig. 4 presents the relative success rates among the three
models. The left panel shows that the FIGNN model (Model
B) outperforms the simple LR model (Model A) in the high
score region. This is not surprising because FiGNN is a more
complex model than the simple LR model. The middle panel
shows that the new LR model (Model C) outperforms the
simple LR model (Model A) in the high score region as
well. This is not surprising either because the new model
includes more features. However, this result indicates that
these oracle features indeed carry critical information missed
by the features in the simple LR model. This finding is
important because these oracle features have been selected
by pretending not to know any inner details of the simple
LR model, except its predictive scores. Furthermore, the right
panel shows that the new LR model also outperforms the
FiGNN model across all the operating points, including those
in the high score region, although the margin is not as great
as that shown in the middle panel. This indicates that these
oracle features capture some important feature interactions
overlooked by FiGNN, although FiGNN, by design, should
have captured these feature interactions automatically. This
experiment confirms our hypothesis in Sec. III-E.

The new LR model also outperforms FIGNN when evalu-
ated by AUC and LoglLoss, as shown in Table I. Also included
in Table I is a LR model trained using the full 200 oracle
features (Model D). The model shows a worse performance
than Model C, suggesting the model has been overfitted while
the model with LFD selected features (Model C) helps reduce

model overfitting. Note that, the AUC and Logloss differ from
the results reported in [27] because of different ways of
splitting the data for model training and testing, as discussed
in Appendix A.

TABLE I
AUC AND LOGLOSS FROM FOUR MODELS.
Model AUC LogLoss
Model A | 0.7431 0.3991
Model B | 0.7470 0.3989
Model C | 0.7530 0.3953
Model D | 0.7483 0.3975

Another interesting observation from Fig. 4 is that, as the
penetration goes deeper, the advantage of FiIGNN and the new
LR model over the simple LR model vanishes (refer to left
and middle panels). We observe similar phenomenon when
pairing the simple LR model with several other state-of-the-
art CTR prediction models [29]-[31]. This indicates that the
benefit of using a more complex model most likely comes from
working on instances in the high score region, as is often the
case for CTR prediction and transaction anomaly detection.
We conjecture this observation may hold for any classification
problems involving highly unbalanced datasets. We will test
this hypothesis in future work.

Fig. 5 shows two types of disagreements among the three
models: disagreements on true positives (clicks, left panel)
defined as (T'Ps+T Pg)/(T'P op+T P 4+ T Pp), and disagree-
ments on false positives (non-clicks, right panel) defined as
(FPA+FPR)(FPag+FPA+FPp). There are two interest-
ing observations from Fig. 5. The first observation is that,
as the penetration goes deeper, disagreements between model
pairs become smaller. This is particularly obvious for the true
positives (clicks). The reason is that when we include more
instances by setting a lower score cutoff, a majority of clicks
are captured by all three models. The second observation is
that disagreements on false positives are much more serious
than disagreements on true positives. This observation moti-
vates us to ponder the following question: in CTR prediction,
or event prediction in general, all current efforts are focused
on identifying events. Should we also put efforts to identify
non-events, that is, try to reduce false positives? We will revisit
this point in Sec. V-C.

B. Payment Transaction Anomaly Detection

The goal of transaction anomaly detection is to predict
the probability that a payment card transaction is abnormal.

Click

—e— Model Pair: A& B
—e— Model Pair: A& C
—e— Model Pair: B & C 0.4

Non-click

o
o

0.6
—e— Model Pair: A& B
—e— Model Pair: A& C
—e— Model Pair: B & C

b
[

0.5

°
>

0.39

o
N

0.2

Disagreement
o
w

o
-

0.1

o
o

r r r T 0.0 r r r r "
20 40 60 80 100 20 40 60 80 100
Percentage of Impressions above Score Cutoff

Fig. 5. Disagreements between CTR prediction models.

The pair of models used in this application is a gradient
boosting machine (GBM) [32] and a recurrent neural network
(RNN) model [33], [34], trained using one-year historical data
involving billions of payment card transactions. We conduct
two experiments in this application. In the first experiment, we
want to see whether the LFD framework can help enhance the
performance of the RNN model. Following the same procedure
for CTR prediction, we first create about 300 oracle features
based on domain knowledge, paying close attention to feature
interactions, especially interactions between cardholders and
merchants. We then perform feature importance analysis using
RWOE and RIV on these 300 features on two sets of instances
receiving conflicting predictions from the pair of models (Note
the RNN score has been aligned against the GBM score
using the score alignment algorithm introduced in Sec.IlI-B.)
We next combine a set of selected features from the above
analysis with the existing features (mainly feature embeddings
created using a representation learning framework [35]) in the
RNN model and train a new RNN model. Fig. 6 shows the
performance lifts expressed in terms of anomaly catch rate at
different operating points by the new RNN model over the
initial RNN model discussed in [34]. We witness notable
performance improvement from the new model. For instance,
at the operating point where 1% of overall transactions are
above the given score cutoff, we see a lift of 5.69%, and
at the operating point where 5% of overall transactions are
above the given score cutoff, we see a lift of 3.14%. The
improvement is substantial considering the sheer volume of
transactions processed by the payment network.

2 a 6 8 10
Percentage of Transactions
above Score Cutoff

Fig. 6. Performance lift of the new RNN model over the initial RNN model.

In the second experiment, we investigate whether the LFD

framework can help explain the reason that ensembles, in this
case GBM and RNN ensemble, can outperform each individual
model, and see whether disagreements are reduced after the
ensemble, which is one of the requirements from our business
partners. We set the ensemble weights as 0.5 for both models
and want to see how the ensemble will work if we treat two
model scores equally.®

Fig. 7 shows relatives success rates among three models,
the GBM model (Model A), the RNN model (Model B), and
the ensemble (Model). The RNN model and the ensemble
outperform the GBM model with substantial margins (the left
panel and the middle panel), but this is not the purpose of
this experiment. The interesting part is the fact revealed by
the curves in the right panel — the GBM model is a “weaker”
model, but combining it with the “’stronger” RNN model using
equal weights can still beat the RNN model at almost all the
operating points in the high score region (notice that the scale
of the x-axis is only up to 10% transactions), measured by the
relative success rates.

Fig. 8 shows the disagreements on true positives (anomalies,
left panel) and false positives (non-anomalies, right panel)
among the three models. We can see that ensemble signifi-
cantly reduces disagreements on both true positives and false
positives. For instance, before the ensemble, at 1% of overall
transactions, the disagreement between GBM and RNN on
true positives is 56.44%. After the ensemble, the disagreement
between GBM and the ensemble becomes 43.94%, a reduction
of 22.14%; and the disagreement between RNN and the
ensemble becomes 17.49%, a reduction of 69.01%. The reduc-
tion is also notable on false positives: before the ensemble, the
disagreement between GBM and RNN is 82.22%. After the
ensemble, the disagreement between GBM and the ensemble
becomes 51.03%, a reduction of 37.94%; and the disagreement
between RNN and the ensemble becomes 53.48%, a reduction
of 34.96%. This experiment helps our business partners better
understand what role each model in the pair has played in the
ensemble.

V. DISCUSSION

In this section, we discuss some limitations of the LFD
framework, and share our thoughts on future work.

A. Identifying the Root Cause of Disagreements Is Hard

LFD provides a principled and practical framework for
identifying and leveraging disagreements between two models,
without resorting to sophisticated algorithms as those proposed
in [4], [5]. We approach the problem from a feature impor-
tance analysis perspective, but we do realize that disagreement
can occur due to a slew of factors [36]-[38], and feature is just
one of them. These factors can affect a model’s behavior either
individually or in combination, which makes the process of
identifying the root cause of disagreements a real challenge.
However, based on our own experiences in developing and

SIn practical deployment, we assign a larger weight to the RNN model.
Deriving the best ensembling weights based on the models’ disagreement has
been published in our another work but out of the focus of this paper.

Model Pair: A & B

Model Pair: A & C

Model Pair: B & C

1.0 1.0 1.0
09 —e— Model A 0.04 —e— Model A 004 —e— Model B
' —e— Model B ' —e— Model C ' —e— Model C
0.8 0.8 0.8
o«
Ui 0.7 0.7 0.7
4
0.6 0.6 0.6
05 0.5 0.5
0.4 r r r r T 0.4 r r r r r 0.4 r r r r r
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Percentage of Transactions above Score Cutoff

Fig. 7. Relative success rates between model pairs (anomaly detection).

Anomaly Non-anomaly

N G

—e— Model Pair: A& B
—e— Model Pair: A& C
—e— Model Pair: B & C

g
o

1.0
—e— Model Pair: A& B
—e— Model Pair: A& C 0.8
—e— Model Pair: B & C

o
©

o
o

0.6

_ 0.4
1 M 1
0.0

2 4 6 8 10 2 4 6 8 10
Percentage of Transactions above Score Cutoff

Disagreement
o
'S

o
N

o
1=}

Fig. 8. Disagreements between anomaly detection models

deploying real production systems, when a problem occurs, the
root cause, in a majority of cases, lies in the features used in
the model — either important features indicative of the event are
not included, or the predictive power of some existing features
becomes illusive or degrades significantly due to changes in
users’ behaviors. This agrees very much with the observation
in [16]: ”At the end of the day, some machine learning projects
succeed and some fail. What makes the difference? Easily the
most important factor is the features used.”

B. Feature Importance Analysis by Groups

RIV provides a simple method of measuring the discrim-
inative power of a predictive feature, without the need of
model training, but it has one major limitation - features
having high RIV often come from the same group, as seen
in the top CTR features from Fig. 9 in Appendix B, which
makes features into the model less diversified. A remedy to
this problem is to first divide oracle features into groups (for
instance, put raw features into the first group, two-dimensional
features into the second group, and so on) and then select
representative features from each group based on their RIV.
This is the approach used in the current work and it works
well. Further, we may combine RIV with a more sophisticated
feature ranking method involving model training (see, for
instance, [2], [3]), where RIV first selects a set of features
from the oracle feature pool (can be redundant, but the size is
smaller than the full feature set), and the sophisticated method
then makes the final selection.

C. Focusing on Reducing False Positives

One finding from our experiments is that disagreement
from non-events is much more serious than that from events.

At first glance we may think this is a known fact because
non-events are abundant while events are rare. A moment of
reflection may suggest that, for event detection, the hardest
part might not be in how to identify events, but in how to
identify non-events (more precisely, to reduce false positives).
When an event happens, for instance, a person clicks an
ad or commits an illicit transaction, there are usually some
signals indicative of the event — this is the fundamental of any
event detection. On the contrary, for non-events, the signals
surrounding them tend to be weak. Therefore, it is actually
the behavior of users from non-events that makes event
detection hard. Current efforts in event detection are mainly
focused on making correct predictions on events (for instance,
identifying clicks and capturing abnormal transactions), but
largely overlook the benefit of making fewer mistakes on non-
events. This is especially problematic for transaction anomaly
detection, because wrongly declining a legitimate transaction
(false positive) would not only incur revenue loss, but also
annoy the cardholder and damage the reputation of the orga-
nization. Creating more oracle features aiming at identifying
non-events, besides those for events, and incorporating them
into the LFD framework, will be performed in future work.

VI. RELATED WORK

Our work is inspired by the co-training algorithm [39]. The
idea of using a pair of classifiers each focusing on a separate
set of features, and using one view to help another, has greatly
influenced our thoughts on LFD. Using a pair of models is
also the key ingredient of several novel deep learning archi-
tectures [40]-[42], where one model guides another model
or helps each other during training. LFD also works on a
pair of models, but with a very different motivation: rather
than tracking model behavior during training by leveraging
training dynamics [38], LFD intends to identify weakness
in established models, for instance, a model deployed in
production or a new model ready for upgrading the deployed
model. Cascade modeling [10], [43], active learning [44],
[45], and dataset cartography [38], capture a similar intuition
to that of LFD — instead of working on full instances in the
whole region, focusing on instances in regions where a model
is most likely to prevail. Apart from improving each individual
model from a model pair, the identified disagreement can also
be used to compare the two models and better ensemble them
based on their behavior discrepancies, as discussed in [46].

LFD is also reminiscent of some recent works on “’predictive
multiplicity” [4], [5], [36], [47], [48], particularly the methods
proposed by Marx et al. [4] and Renard et al. [5]. Marx
et al. introduce formal measures to evaluate the severity of
predictive multiplicity. Renard et al. propose a model-agnostic
algorithm to capture and explain discrepancies locally, ex-
tending the idea of LIME [2]. However, there exist notable
differences between LFD and the above methods in how
to locate those conflicting predictions. In [4], discrepancies
among a set of classifiers are computed using integer program-
ming by optimizing prediction accuracy on the training data
set, where the classifiers are constrained to be linear. In [5],
discrepancies are located by producing a set of segments using
a computationally intensive procedure searching through the
full training dataset. In contrast, the process of identifying
discrepancies in LFD is much simpler, and there is no need
to constrain classifier types (linear or nonlinear) or to involve
sophisticated algorithms, which makes LFD more practical for
large-scale industrial applications.

VII. CONCLUSION

The need for discovering the reasons behind model dis-
crepancies arises in many machine learning applications. This
is a non-trivial task because discrepancies can occur due to
a slew of factors. This is especially true for human-facing
machine learning applications such as CTR prediction and
transaction anomaly detection where users’ behaviors are
constantly changing. In this paper, we present the “Learning
from Disagreement” framework to understand discrepancies
between models from a feature importance analysis perspec-
tive. The core of LFD is to work on a pair of models, with one
model serving as the mirror of the other. It focuses on instances
that lead to contradictory decisions between this pair of models
at a given operating point, gaining insights into the pair of
models without knowing their inner operations, and offering
actionable feedback for improving the model performance. We
demonstrate the usefulness of this framework through two real-
world event detection applications.

REFERENCES

[1] “Netflix never uses its 1 million algorithm due to engineering costs,”
2012. [Online]. Available: https://bit.ly/3n8NMWi

[2] M. T. Ribeiro, S. Singh, and C. Guestrin, “”” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135-1144.

[3] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized
feature attribution for tree ensembles,” arXiv preprint arXiv:1802.03888.

[4] C. Marx, F. Calmon, and B. Ustun, “Predictive multiplicity in classi-
fication,” in International Conference on Machine Learning. PMLR,
2020, pp. 6765-6774.

[5] X. Renard, T. Laugel, and M. Detyniecki, “Understanding predic-
tion discrepancies in machine learning classifiers,” arXiv preprint
arXiv:2104.05467, 2021.

[6] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising, 2014, pp. 1-9.

[7]1 B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate
multiclass probability estimates,” in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2002, pp. 694-699.

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi, “Winner’s curse?
on pace, progress, and empirical rigor,” 2018.

T. Raeder, O. Stitelman, B. Dalessandro, C. Perlich, and F. Provost,
“Design principles of massive, robust prediction systems,” in Proceed-
ings of the 18th ACM SIGKDD international conference on knowledge
discovery and data mining, 2012, pp. 1357-1365.

W.-T. Yih, J. Goodman, and G. Hulten, “Learning at low false positive
rates.” in CEAS, 2006.

M. E. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making
much progress? a worrying analysis of recent neural recommendation
approaches,” in Proceedings of the 13th ACM Conference on Recom-
mender Systems, 2019, pp. 101-109.

Z. C. Lipton and J. Steinhardt, “Troubling trends in machine learning
scholarship,” arXiv preprint arXiv:1807.03341, 2018.

S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A benchmark
for interpretability methods in deep neural networks,” arXiv preprint
arXiv:1806.10758, 2018.

A. Fisher, C. Rudin, and F. Dominici, “All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class
of prediction models simultaneously.” J. Mach. Learn. Res., vol. 20, no.
177, pp. 1-81, 2019.

K. Patel, S. M. Drucker, J. Fogarty, A. Kapoor, and D. S. Tan, “Using
multiple models to understand data,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78-87, 2012.

N. Siddiqi, Credit risk scorecards: developing and implementing intel-
ligent credit scoring. John Wiley & Sons, 2012, vol. 3.

O. Chapelle, E. Manavoglu, and R. Rosales, “Simple and scalable
response prediction for display advertising,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 4, pp. 1-34, 2014.
“Iso 8583,” 2021, accessed: 2021-09-01. [Online]. Available:
https://bit.ly/3pfIOKO

AnyAl, “OpenCTR,” https://zenodo.org/record/2002072, 2018.

“How to get the lowest price for impression-based advertising,” 2021,
accessed: 2021-09-01. [Online]. Available: https://bit.ly/2Zb3706

J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in 2015 IEEE international confer-
ence on data science and advanced analytics (DSAA). 1EEE, 2015.
P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 191-198.

L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing deep
neural network decisions: Prediction difference analysis,” arXiv preprint
arXiv:1702.04595, 2017.

S. Dzeroski, B. Cestnik, and I. Petrovski, “Using the m-estimate in rule
induction,” Journal of computing and information technology, vol. 1,
no. 1, pp. 3746, 1993.

B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates
from decision trees and naive bayesian classifiers,” in Icml, vol. 1.
Citeseer, 2001, pp. 609-616.

Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “Fi-gnn: Modeling
feature interactions via graph neural networks for ctr prediction,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, 2019, pp. 539-548.

H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction:
a view from the trenches,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2013, pp. 1222-1230.

W. Chen, L. Zhan, Y. Ci, M. Yang, C. Lin, and D. Liu, “Flen: leveraging
field for scalable ctr prediction,” arXiv preprint arXiv:1911.04690, 2019.
W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and G. Lin, “Deeplight:
Deep lightweight feature interactions for accelerating ctr predictions in
ad serving,” in Proceedings of the 14th ACM international conference
on Web search and data mining, 2021, pp. 922-930.

W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
“Autoint: Automatic feature interaction learning via self-attentive neural
networks,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 1161-1170.

J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189-1232, 2001.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

TPA \A) TPB FPA A\ FPB TPAB \A) FPAB
siteid_appid_c17 4.194388 siteid_appid_c17 4.671380 siteid_dvmodel_appid_c17 0.289480
siteid_appid_c14 3.973263 siteid_appid_c14 4.505817 siteid_dvmodel_appid_c14 0.282160
siteid_c17 3.646253 siteid_dvmodel_appid_c17 4.335556 siteid_dvmodel_appid_c21 0.275388
siteid_appid_c21 3.630703 siteid_dvmodel_appid_c21 4.316343 siteid_dvmodel_appid_c19 0.267853
sitedomain_c17 3.592018 siteid_dvmodel_appid_c18 4.188084 siteid_dvmodel_appid_c18 0.261674
siteid_c14 3.583191 siteid_dvmodel_appid_c19 4.126306 siteid_devicemodel_appid 0.242305
siteid_dvmodel_appid_c21 3.563603 siteid_devicemodel_appid 4.040462 userid_siteid 0.240799
sitedomain_c14 3.529354 siteid_c17 4.0160M1 userid_appid 0.240561

siteid_dvmodel_appid_c17 3.520299
siteid_dvmodel_appid_c18 3.509787

sitedomain_devicemodel_appid 3.999635

siteid_c14 4.009016 userid_siteid_appid 0.240351

sitedomain_devicemodel_appid 0.239667

Fig. 9. Top 10 features by RIV for different populations.

W. Zhang, L. Wang, R. Christensen, Y. Zheng, L. Gou, and H. Yang,
“Transaction sequence processing with embedded real-time decision
feedback,” Oct. 19 2021, uS Patent 11,153,314.

C.-C. M. Yeh, D. Gelda, Z. Zhuang, Y. Zheng, L. Gou, and W. Zhang,
“Towards a flexible embedding learning framework,” in 2020 Interna-
tional Conference on Data Mining Workshops (ICDMW). 1EEE, 2020.
A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beu-
tel, C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman et al., “Underspec-
ification presents challenges for credibility in modern machine learning,”
arXiv preprint arXiv:2011.03395, 2020.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, pp. 2503-2511, 2015.

S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A.
Smith, and Y. Choi, “Dataset cartography: Mapping and diagnosing
datasets with training dynamics,” arXiv preprint arXiv:2009.10795.

A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference on
Computational learning theory, 1998, pp. 92—100.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” arXiv preprint arXiv:1804.06872, 2018.
L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in International Conference on Machine Learning.
PMLR, 2018, pp. 2304-2313.

E. Malach and S. Shalev-Shwartz, “Decoupling” when to update” from”
how to update”,” arXiv preprint arXiv:1706.02613, 2017.

D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and
Y. Zhou, “Detecting adversarial advertisements in the wild,” in Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2011, pp. 274-282.

Z. Lu, X. Wu, and J. C. Bongard, “Active learning through adaptive
heterogeneous ensembling,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 2, pp. 368-381, 2014.

I. Muslea, S. Minton, and C. A. Knoblock, “Active learning with
multiple views,” Journal of Artificial Intelligence Research, vol. 27, pp.
203-233, 2006.

J. Wang, L. Wang, Y. Zheng, C.-C. M. Yeh, S. Jain, and W. Zhang,
“Learning-from-disagreement: A model comparison and visual analytics
framework,” IEEE Transactions on Visualization and Computer Graph-
ics (arXiv preprint arXiv:2201.07849), 2022.

M. Pawelczyk, K. Broelemann, and G. Kasneci, “On counterfactual ex-
planations under predictive multiplicity,” in Conference on Uncertainty
in Artificial Intelligence. PMLR, 2020, pp. 809-818.

C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206-215, 2019.

S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in data
mining: Formulation, detection, and avoidance,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 6, no. 4, pp. 1-21, 2012.

APPENDIX
A. Data Splitting

Avazu dataset is collected during a time span of 10 days.
We use the first nine days’ data for model training, and last
day’s data for model testing. Notice here the way of splitting
data is different from that in FiGNN [27], where the whole 10
days of data are mixed together for both training and testing.
Our splitting is more realistic and closer to production settings.
Table II should make this point clear where we perform an
overlap analysis between entities in the first nine days and
in the last day. Take “Device ID” as an example. There are
2484613 Device IDs in Day 1 through Day 9, and 285944
Device IDs in Day 10. Among the 285944 Device IDs, 201795
(70.57%) cannot be found in the first nine days. Apparently,
including the last day’s data for model training will lead to
information leakage [49].

TABLE II
OVERLAP BETWEEN ENTITIES IN DAY 1-9 AND 10.
Entity Day1-9 Day 10 Day 10 Percentage
Only
Device ID | 2484613 285944 201795 70.57
Device IP | 6134351 1023643 595135 58.14
Cl4 2470 1191 156 13.10

B. Example Top-Ranked Features by RIV

Fig. 9 presents top 10 features by RIV based on two types
of disagreements from Model A and Model B: disagreements
on true positives (refer to left panel), and disagreements on
false positives (refer to middle panel). It is interesting to
notice that these two sets of features are pretty much in
agreement. Also included in the table are the top 10 features
from the agreed instances (refer to the right panel). These are
instances either correctly classified by both models (T'P4sp)
or incorrectly classified by both models (F'P 4p). Intuitively,
it is hard to differentiate instances in 1'P 4g from instances
in F'P 4. This is indeed the case: the RIV values in the right
panel all have a smaller value, indicting the signals used to
separate these two populations are very weak.

