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Abstract—Visual question answering (VQA) is a challenging
task that requires a deep understanding of language and images.
Currently, most VQA algorithms focus on finding the correlations
between basic question embeddings and image features by using
an element-wise product or bilinear pooling between these two
vectors. Some algorithms also use attention models to extract
features. In this paper, deeper analyses of these attention fea-
tures are enabled by capturing their importance by weighting
their contextual information. A novel interpretable VQA system
leveraging weighted attention contextual features (WACF) is
proposed for VQA tasks. This is a multimodal system which
can assign adaptive weights to the features of questions and
images themselves and to their contextual features based on their
importance. Our new model yields state-of-the-art results on the
MS COCO VQA datasets for open-ended question tasks.

I. INTRODUCTION

Visual question answering (VQA) has become a popular
research problem that is being studied from the perspectives
of multiple disciplines, such as natural language processing
(NLP) and computer vision. The objective of a VQA task
is to generate an answer based on an image and a given
related question. The answer can be a number, a response
of yes or no, or a word phrase. Such a task is not trivial
because it is necessary to first understand each image and its
corresponding question and then find the correlations between
question-image pairs based on their own features as well as
certain auxiliary external features [1], [2], [3], [4], [5], [6],
[71, [8], [9]. Currently, most VQA approaches take advantage
of the concept of multiple modalities by representing images
and queries separately using two embedding or feature vectors
[10]. In the vision mode, image features are extracted using
a convolutional neural network (CNN) [11], whereas in the
question understanding mode, a question embedding vector is
generated to represent the semantic meaning of the question
by using either a recurrent neural network (RNN) or the bag-
of-words approach [12]. To identify the important information
with regard to a question-image pair, most current algorithms
use the concept of attention/co-attention. By assigning dif-
ferent weights to different image features, a good attention
algorithm is able to select the features in an image that are
most important in relation to the question being asked. There
are many ways to generate attention weights, such as an
elementwise sum or product or multimodal compact bilinear
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Fig. 1: An example in which an incorrect answer is obtained
using a VQA model

pooling (MCB) [10], and most of them demonstrate reasonable
performance on VQA tasks [13].

Despite the decent results that have been obtained by
using different attention mechanisms for VQA, the overall
performance achieved is still not comparable to that of human
beings [6]. One possible reason for this shortfall is that humans
can use more contextual information in both the question and
the image to infer the answer. By observing the attention
maps and test results generated by one current state-of-the-
art VQA model, we can identify that most incorrect answers
are generated for one of two reasons: 1. The question and its
contextual information are not fully understood by the system;
hence, the correct answer cannot be generated even though the
correct regions of the image can be located.

2. Due to the attention mechanism applied, part of the impor-
tant contextual information in the image is missing, adversely
affecting the system performance.

In the example shown in Figure 1, the orange-colored text
is contextual information that should be de-emphasized by the
model since the text in purple is the real question that needs
to be addressed. Consequently, although the correct regions of
the image are emphasized in the attention map, the model still
cannot find the correct answer.

To overcome these two potential difficulties, in this paper,
a new interpretable multimodal structure for VQA is designed



by considering the contextual information in questions and
images. A weighted contextual feature (WCF) structure is
also proposed to balance the essential information from the
question/image and the contextual information by assigning
appropriate ratios through learning.

In this paper, our three main contributions are as follows:
1. We propose a framework in which contextual features
extracted from multiple sources (image and query) are used to
improve VQA performance by further considering the cross-
impact of these features with different types of data.

2. We introduce interpretable multimodal WCF modules to
balance the weights of different contextual features based on
their importance.

3. Finally, we show that our model achieves state-of-the-art
results on two well-known public VQA datasets.

The paper is organized as follows. Section 2 presents back-
ground on related work, including attention models, semantic
contextual feature generation using long short-term memory
(LSTM), and image contextual feature generation using multi-
dimensional LSTM. A detailed system design based on contex-
tual information and the proposed multimodal attention-based
WCF model are introduced in section 3. Section 4 reports
several experiments performed to demonstrate the performance
of our new system in comparison to previous state-of-the-art
results on two VQA datasets.

II. RELATED WORK
A. Attention-based Encoder-Decoder Model

The attention concept has been widely applied for model
building in many domains, such as neural machine translation,
the slot-filling task and sentiment classification in NLP [14],
[15], [16] as well as the object detection and image captioning
tasks in computer vision [17], [18]. As in [15], an attention
mechanism can be used in an encoder-decoder structure to
generate semantic contextual features. A sentence is passed
through an RNN encoder word by word to generate the
corresponding hidden states h;. The contextual information
is then captured by a weighted sum of the RNN encoder’s
hidden states as follows:

c = Zai,,jhj (1)
=1

where n is the length of the input sequence and the «; ; are
weight coefficients. The weight coefficients are computed as
follows:

exp(gi,;)
> k=1 €7p(di k) 2)
Gk = ¢(8i—1, hy,)
where the s; are the hidden states of the decoder and ¢(-)
is a feedforward neural network. Unlike the output ¥y, of
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the RNN encoder-decoder structure, which focuses on the last
element of the input sentence, the attention-based contextual
vector ¢; can take advantage of the semantic information from
all words in proportion to their importance.

B. Semantic Features and Image Features

As mentioned earlier, to find the correlation between an
image and its corresponding question, representations using
feature vectors are needed. The simplest way to generate the
semantic features of a question is by averaging the embeddings
of the words; however, this approach can yield only coarse
estimates of sentence-level features. Currently, it is more
common to generate a sentence feature by sequentially passing
the embedding of each word through an RNN model and
then using the output of the RNN as the sentence embedding.
An alternative method is to use an encoder-decoder model
consisting of two RNN models, which allows contextual
information to be captured by using the hidden states of the
encoder and decoder. The decoder can generate an output of
flexible length and can be used as either a sequence tagger
or a classifier. Unlike semantic features, most image features
are extracted using CNNs due to their advantageous ability
to extract high-level information from raw two-dimensional
(2D) pixel values. Some of the widely used models for this
purpose include LeNet, AlexNet, VGG and ResNet [19], [20],
[21], [22]. In this paper, we will use a pretrained ResNet model
[22] as our image feature extraction model.

C. Multidimensional LSTM

As illustrated in section II-A, the contextual features of
a question can be generated using an RNN-based encoder-
decoder model. However, since no hidden states exist in a
CNN, it is not easy to extract image contextual features
in a similar manner. To overcome this obstacle, we use an
encoder-decoder structure based on multidimensional LSTM
(MDLSTM) [23] to identify contextual features from among
the image features generated by a CNN. In our scenario, a
2D MDLSTM network is used to encode and decode image
features. Since MDLSTM is not a commonly used LSTM
structure, before all of the details are presented, a brief
mathematical formulation of MDLSTM is given in (3):

g =o(W“H)
g{ =o(W{H)
9 =o(W{H)
g° = o(W°H)

3)

h/ = tanh(g® @ m/)
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Fig. 2: The general structure of the multimodal attention-based WCF (MA-WCF) model

Here, H is the concatenation of the new input z;, trans-
formed by a projection matrix I, and the hidden vectors h;
(i = {1,2}) from the last time step for both directions in a
2D setup; i.e., H = [Ix;, hy, hs)T. In addition, W, W],
We, and W€ are the weight matrices of the input gate, forget
gate, output gate and cell state, respectively, in an MDLSTM
structure.

From (3), it can be observed that a 2D MDLSTM structure
exhibits two main differences from a 1D LSTM structure:
1. Two hidden state vectors h; (i = {1,2}), one for each of
the two directions, from the previous time step are used to
generate H. In our case, the concatenated vector H for an
input image feature I; ; € I is generated from the hidden
states corresponding to positions (i — 1,7) and (¢,j — 1), i.e.,
hi—l,j and hi,j—l-
2. Two forget gates gif (i = {1,2}), one for each dimension,
are used to generate the final output hidden state h’.

III. ATTENTION-BASED MULTIMODAL VISUAL QUESTION
ANSWERING SYSTEM USING WEIGHTED CONTEXTUAL
FEATURES

As described earlier, it is possible to extract semantic con-
textual features using an RNN-based encoder-decoder struc-
ture or image contextual features using an MDLSTM-based
encoder-decoder structure. Specifically, the RNN structure in
our system is chosen to be a bidirectional LSTM (BLSTM)
structure [24]. Moreover, as demonstrated by the VQA ex-
ample given in Figure 1, many instances of misinterpretation
in VQA tasks can be attributed to a misunderstanding of the
contextual information present in the question (which can be

extremely important) or image. Inspired by these observations
and model features, we propose an attention-based multimodal
system that leverages contextual features of both questions and
images for VQA tasks. The basic structure is shown in Figure
2.

As shown in the figure, our attention- based multimodal
system consists of several component:
1. The question contextual feature extraction (Q-CFE) module
2. The image contextual feature extraction (I-CFE) module
3. The WCF-based question-image understanding module
4. The WCF-based answer generation module
These modules will be described in detail in this section.

A. The Question Contextual Feature Extraction (Q-CFE)
Module

A BLSTM-based encoder-decoder structure is used to ex-
tract the semantic contextual features in our Q-CFE mod-
ule. The advantage of the BLSTM structure is that it can
capture sentence-level information in both the forward and
backward directions; hence, reasonably well-balanced encoded
information can be obtained in the last time step n. During
training, the question inputs (zi,---,2,) are read into the
BLSTM network in the forward and backward directions, and
the network generates two hidden state sequences, hf; and
hb;. The hidden state h; in time step t is then obtained
as a concatenation of hjf; and hby, i.e, hy = [hf;, hb;).
For the encoder-decoder structure defined in section II-A,

the generated question-level semantic contextual features c¢2,,



and the extracted question features v4 can be mathematically
represented as follows:

n

q — § . h9

Ceon = alyjhj
j=1

s; = g1(8;-1,h)

4)
v? = g1(s,_1, h)
81? = 92(8?—17 cgon)

vgon = 92(8721—17 c(clon)
where ¢1 (+) is an RNN-based decoder for generating question
sequence embeddings and go(-) is an RNN-based decoder for
generating question-level contextual features, cd,,,. s} is the
hidden state generated by g;(-), and s? is the hidden state
generated by ga(-). are the decoded question
features and contextual features, respectively. n is the length
of the question, which is equal to the total number of time
steps required to process the question. The attention weights

a; ; are defined as in section II-A.

q q
v? and vd,,,

B. The Image Contextual Feature Extraction (I-CFE) Module

Following the definition of MDLSTM given in section II-C,
a detailed explanation of the construction of the MDLSTM-
based I-CFE module is given in this section.

The image feature tensor, containing k image features, is
represented by I € R¥*">X"_ This tensor is extracted in the
usual manner, by passing the raw image data into a CNN-based
image classifier and then extracting its embedding features
before the last softmax layer. Then, the MDLSTM encoder
reads in each image feature I; ; € I together with the hidden
state vectors h; ;1 and h;_; j, which are generated from the
image features I; ;_; and I;_; ;. These hidden states will be
used as the input to a subsequent MDLSTM-based decoder
to generate decoded image features. By using an attention
mechanism similar to that described in section II-A, an image
contextual feature is generated as follows:

cion = att(hij) = Z Z ai,jhij (5
i=1 j=1

Here, n x n is the number of image features generated by the
CNN from the raw image inputs, and «; ; is calculated as
follows:

exp(Ti,;)
D i1 2y €xp(Ti ;) (©6)
75 =¢(sr, hi )
where ¢(-) is a feedforward neural network and sy is the last
hidden state generated by the MDLSTM decoder. Since only

one feature vector is generated by the decoder for each image,
only the last hidden state is applied, i.e., sy.

Q=

The postprocessed image features DI € RFX"X" are
generated by taking the hidden states from the encoder as the
input to the decoder:

I I I I
D;;=g"(si_1:8i -1,

h ;) (7

where g’ (-) is the MDLSTM decoder. Similarly, the decoder

output DI € RF*1X1 for a contextual feature is calculated
as follows:
I I (oI I I
Dcon = gcon(sn—l,n’ Sn,n—l’ ccon) (8)
where S,IL_L,L and s;’w_l are the previous hidden states of

I
con

feature generated as shown in (5).

the decoder relative to s{m and c,,,, is the contextual image

C. The Weighted Contextual Feature (WCF)-based Question-
Image Understanding Module

Once the contextual features have been separately extracted
from the questions and images, the next important question is
how to use these features effectively based on their importance.
In this paper, we propose a WCF-based approach to take
advantage of the contextual vectors generated by our model.
The first application of this technique in solving our problem
is to understand the questions asked about the given images,
i.e., to find the features of an image that are most closely
related to the corresponding image-question pair.

One of the most effective ways to approach this problem is
to adopt a (co-)attention mechanism by assigning an attention
weight to each image feature vector and then summing them
together. There are several popular methods of generating
attention weights, including projection [25], HieCoAtt [6], and
MCB [10]. In this paper, we will use the projection approach
to find the attention weights as shown in (9):

a1 = (D))
Zj

a(zj):ﬁ for j={1,---,n} ®
where a; is the normalized softmax weighting (o (-)) of the in-
ner product of the postprocessed image feature vector D! and
the decoded question feature vector vg. Since DT € RF*nxn
and Veon € RFX1X1 the attention weights generated by (9)
have dimensions of af € R1*nxn,

Thus, o represents the attention weights of the image
features from the perspective of the question embedding.
Similarly, we can generate another attention weight vector

o by projecting the question contextual features vd,,, onto

con
the postprocessed image feature vector D! to highlight the
image features that are most useful, based on the contextual
information contained in the question, by assigning larger

attention weights to them:

oy = o((DH) veon) (10)



where al € RI*nxn,

Although the attention weights generated by using the
question embedding v4 and the question contextual features
Veon have the same dimensions, the naive sum of these two
sets of attention weights will not result in suitable performance
of our model since the embedding of a sentence and its
contextual features may not be of equal importance. This
possibility inspires us to assign an additional weight parameter
v; to each attention weight a; to enable the further learning
of the relative importance of attention weights from different
sources.

Q1,2 = Y1001 + Y202
I_ T pI
W' =a;,D

where o = 1 — 73, 0 < v < 1 (i = {1,2}), and W7 is
the attention-generated image feature obtained by using the
weighted attention vector 1 2. During training, -; is updated
through backpropagation.

The image feature W that is generated based on the at-
tention mechanism still does not contain the image contextual
I . generated earlier. To further incorporate this
information, we again apply our weighting mechanism to these
two vectors as follows:

GI = ’73D£on + 74WI

where 74 = 1 — 73 and 0 < v < 1 (i = {3,4}).
During training, 3 is updated through backpropagation. The
generated vector G can be interpreted as a projected image
vector based on the extracted understanding of the question
and its contextual information.

The next step is to generate an answer based on the question
and our projected image vector GL.

(11

features c

12)

D. The Weighted Contextual Feature (WCF)-based Answer
Generation Module

To generate an answer based on the question-related vectors
(vq and vcon) and our generated projected image vector GT,
a WCF-based convolution algorithm is designed:

Vq,con = V5Ucon + Y6Uq

13
AQJ _ GI % Vg con (13)

where A%T is the vector generated by the convolution G¥
Vg,con> V5 = 1 — 76, and 0 < 45 < 1 (i = {5,6}). During
training, 5 is updated through backpropagation.

The convolution operation can be further rewritten as

G' % vy con = FFT Y (FFT(vg,con) - FFT(GY)) (14)

Here, FFT(-) denotes the Fourier transform, and FFT~!
denotes the inverse Fourier transform.

The final answer is generated in the form of a one-hot vector
by passing A?! through one fully connected layer and one
additional softmax layer.

IV. EXPERIMENT
A. Datasets

MS COCO VQA Datasets: This dataset contains a total
of more than 200k images, with 82,783 images for training,
40,504 images for validation, and another 81,434 images for
testing. There are 3 questions per image and 10 answers per
question. A total of 25% of the test dataset is designated as
test-dev data. Currently, there are two versions of the VQA
dataset (v1 [26] and v2 [27]), with the same number of images
but different numbers of questions. We used both of them in
our experiment for completeness, since for most models in the
literature, results have been published only for VQA v1.

We report our evaluation results obtained using both the
test-standard dataset and the test-dev dataset. Moreover, the
results obtained on open-ended tasks (on both VQA vl and
VQA v2) are reported. The model was trained on the training
and validation sets, and the results are compared with those of
the current state-of-the-art models for each category and the
whole dataset.

B. Experimental Setup

1) Different Model Configurations: We tested our MA-
WCF model with several different configurations:

MA-WCF model without question contextual features: In
this model configuration, we removed the question contextual
features v.or, shown in Figure 2; hence, the weight parameters
Y1, Y2, 3 and 74 were removed from the system during
training. The entire model contains only one set of WCFs,
i.e., the image contextual features DI .
MA-WCF model without image contextual features: The
second model configuration was created by removing the
image contextual features from the MA-WCF model, thus
eliminating the two weight parameters 3 and ~4.

MA-WCF model with both question and image contextual
features: This is the original model as shown in Figure 2.

2) Architecture Parameters: The image features were ex-
tracted from a 152-layer ResNet model [22] that was pre-
trained on the ImageNet dataset [32]. The features extracted
before the last classifier layer (“pool5”) were used as the image
feature inputs to the MDLSTM classifier. Following the model
configuration described in [10], image features were generated
with dimensions of [ € R2048%14x14 The dimensionality of
the MDLSTM encoder-decoder structure was set to 2, and
the number of units was chosen to be 2048 to keep the
dimensions consistent. On the question side, each question
was first tokenized into words, and 100-dimensional word
vectors were generated from GloVe word2vec representations
[33]. Then, these word vectors were fed into a 2048-unit
BLSTM structure. The decoder RNN had the same number of
units, such that v, € R?48X1 The other vectors’ dimensional
information can be found directly from Figure 2.



Q: What is the number
of the person kicking the
ball?

MA-WCF w/o question
context: 2 (Incorrect)

Q: What types of
material is used for
making baseball bats?

MA-WCF w/o question
context: 5 (Incorrect)

MA-WCF w/o image
context: 2 (Incorrect)

MA-WCF: 23 (Correct)

MA-WCF w/o image
context: 5 (Incorrect)

MA-WCF: Wood (Correct)

Fig. 3: Examples used for comparison between MA-WCF and state-of-the-art models

Table I: Results for Open-ended Answers on the Test-dev and Test-standard Datasets in VQA v1 and VQA v2

Test-dev (%)

Test-standard (%)

VQA vl Y/N  Num. Other All Categories | Y/N  Num. Other All Categories
Ensemble MCB [10] 834 39.8 58.5 66.7 83.2 39.5 58.0 66.5
Stacking+Features [5] NA NA NA NA 82.6 39.5 58.3 67.3
Alpha VQA [28] NA NA NA NA 87.61 45.63 63.30 71.48
MA-WCF w/o Question 84.63 4351 61.32 69.27 84.73 43.13 63.56 69.3
Context
MA-WCF w/o Image Context | 85.13 43.88 62.83 69.56 853 4413 63.39 69.7
MA-WCF 88.64 46.52 64.12 72.45 88.92 46.73 64.46 73.52
VQA v2 Y/N  Num. Other All Categories | Y/N  Num. Other All Categories
IL-QTA [29] 87.96 56.12 6351 72.75 88.26 5522 63.63 72.93
MIL@HDU [30] 90.09 59.2  65.69 75 90.36  59.17 65.75 75.23
GridFeat [31] 90.73 61.84 67.01 76.19 90.81 61.53 67.04 76.29
MA-WCF w/o Question 89.62 58.28 65.72 75.95 89.45 5846 66.58 75.92
Context
MA-WCF w/o Image Context | 89.95 5945 66.43 76.25 90.35 59.82 67.34 76.27
MA-WCF 91.24 61.05 67.43 76.94 9145 6132 67.85 77.05

The Adam stochastic optimizer was used, with a learning
rate of 0.002 and early termination in the case of no improve-
ment for 30 consecutive epochs.

C. Experiments

The three different configurations of our model were trained
on the training and validation sets from the MS COCO
VQA dataset for comparison with state-of-the-art models. The
results are shown in Table I. In this subsection, we present
some visual examples showing how the MA-WCF structure

facilitates interpretation by taking advantage of both question
and image contextual features.

1) Interpretablilty of MA-WCF': Figure 3 shows the results
of applying the three different MA-WCF configurations to
two different examples. In the first example, the noun “the
person” is modified by the postpositional phrase “kicking
the ball”; therefore, question-level contextual features must
be considered for the question to be correctly understood.
Otherwise, the model may not be able to focus on the
correct subregions of the image since the question is not fully



understood. In the second configuration, with the image-level
contextual features removed, the model can locate the correct
subregions of the image; however, it still cannot generate the
correct answer since the contextual correlations between the
masked sub-regions cannot be fully understood. Therefore,
incorrect answers are generated when the image contextual
features are not considered.

Similarly, in the second example, the question-level seman-
tic contextual features help to locate the correct image subre-
gion(s) to enable the identification of the “type of material”.
Then, the image contextual features further help to generate the
correct answer by filtering out some noisy image information
(such as the presence of 5 baseball bats) by giving them lower
weights, hence generating the correct answer.

From the above two examples, we can see that the question-
level semantic contextual features help the system to locate
the correct question-related subregions of the image (through
masking), while the image-level contextual features mainly
help the system to generate correct answers by assigning
appropriate weights to the extracted subregions.

In the next subsection, we will present more quantitative
results obtained using our model and compare them with the
results of several baseline models on the VQA datasets.

2) Experiment Results on VQA Datasets: One observation
that can be drawn from Table I is that the performance of the
model without question contextual features is far inferior to
both that of the model without image contextual features and
that of the model with both types of contextual features. This
finding demonstrates the importance of question contextual
features to our system. The MA-WCF model with both image
and question contextual features outperforms the previous
state-of-the-art results on each category for both the test-dev
and test-standard sets in VQA v1 and on most categories in
VQA v2. Excitingly, our model even shows better performance
than ensemble/stacking-based models do. On VQA vl, the
MA-WCF model outperforms the current state-of-the-art Al-
pha VQA model by 2.1% on the test-standard dataset. On
VQA v2, the MA-WCF model outperforms the current state-
of-the-art model by GridFeat by 0.75% on the test-dev dataset
and by 0.76% on the test-standard dataset.

V. CONCLUSION

In this paper, we have proposed a novel interpretable
multimodal system using attention-based weighted contextual
features (MA-WCF) to address the visual question answering
(VQA) problem. By using adaptively weighted contextual
features extracted from both questions and images, our system
gains the advantageous ability to pinpoint the most important
parts of both questions and images while de-emphasizing
less important features. We have achieved new state-of-the-
art results on the MS COCO VQA dataset for open-ended

question tasks. As a relatively general technique, our MA-
WCEF approach can be further extended to other text- or image-
related tasks, such as question answering, text summarization
or visual grounding. The interpretability of the model also
endows it with great potential for application to more complex
conversational VQA tasks; we are currently working on this
problem and will report our progress in future works.
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