Exploiting High-order Relations Information for
Learning User Intent with Data-driven

Abstract—Session-based recommendation (SBR) plays a vital
role in assisting people in finding their desired information. How-
ever, prior arts focus only on modeling intra-session characteris-
tics but pay less attention to inter-session relationships of items,
which may result in irrelevant recommendations. Meanwhile,
graph neural networks based methods regard the item transitions
as pairwise relations and neglect the complex high-order informa-
tion among items, which significantly limits the improvement of
the recommendation. To overcome these challenges, we propose
a novel yet powerful framework in this paper for SBR, which
we refer to as a dual-view collaboration graph neural network
(DC-GNN). The key insight is to exploit item transitions over
sessions in a more subtle manner by modeling session-based
data as a hypergraph. Specifically, DC-GNN learns two views
of item embeddings from the graph level and hypergraph level,
respectively: (i) Graph view, which is to learn the session-level
item embedding by modeling pairwise item transitions within the
session; and (ii) Hypergraph view, which is to learn the global
item embedding by modeling beyond pairwise item transitions
across all sessions. These two types of graph modeling with data-
driven can provide complementary information for each other
while keeping independent and exhibiting divergence to some
degree. Extensive experiments on multiple real-world datasets
demonstrate the superiority of the proposed model over the state-
of-art methods, and the results validate the effectiveness of graph
data modeling and self-supervised task.

Index Terms—High-order Relations, Graph Neural Network,
Hypergraph

I. INTRODUCTION

With the ever-growing volume of online information, mas-
sive products, content, and services (which are uniformly
described as items) are emerging every day [1]. Recommender
systems (RS) play a significant role in providing personalized
recommendations to alleviate the problem of information over-
load. Most recommender systems generally provide personal-
ized recommendations based on definitive user information.
However, users’ identity information is often unavailable in
many real-world scenarios, e.g., unregistered users or the ones
who are reluctant to log in for privacy concerns [2]. Thereby,
the traditional RS is less capable of predicting it. In such a
situation, there is an urgently practical need to provide accurate
recommendations with limited behavior information [3].

Session-based recommendation (SBR) has emerged in time,
which encapsulates a range of latest consecutive user-item
interactions as sessions for predicting the next items from
the sequential behavior consumed, leads to better performance
[4]. Most early studies on SBR deployed for e-commerce
are based on relatively simple methods that do not use a
user profile, e.g., item similarity [5], or chain-based [6].
While effective, the former often takes only the last click

or selection of the user into account, ignoring past clicks’
information. The latter infers all possible sequences of user
choices over all items, which may suffer from intractable
computation problems where the number of items is large [7].
Afterward, recurrent neural networks (RNNs) [8] exhibited an
overwhelming advantage in modeling sequential data since the
data is usually temporally dependent. However, these RNNs-
based models ignore the coherence of items. There may be
no such strict chronological order among user behaviors. For
example, as shown in Figure 1, if a user intends to buy
ingredients for a cake, whether to purchase flour first or eggs
later would not affect user preference. Instead, strictly and
solely modeling the relative orders of items and ignoring
the coherence of items would probably make the recom-
mendation models prone to overfitting [9]. Recently, graph
neural networks (GNNs) have effectively represented both
item consistency and sequential dependency. Unfortunately,
they suffer from performance degradation when dealing with
complex and long sessions, where it is difficult to understand
user intent [10].

A critical issue is how user intent is revealed in such
session-based recommendation approaches. The individual
items can reveal user intent, but only provide limited evidence.
To illustrate, consider the example in Figure 1. The same
strawberry can be viewed differently, i.e., as an option for
fruits in Session 1, or as part of the ingredients for fruit cake in
Session 2. However, if we independently consider strawberry,
it might be viewed as exactly the same item across sessions.
In a sense, the meaning of an item (and what it reveals about
user intent) could be inferred from contextual sessions, each of
which contains a set of consecutive items showing up together
within a session.

Hence, we suggest modeling session-wise item represen-
tations that can robustly capture user intent with the only
limited evidence available in short sessions. However, there
are two key challenges in eliciting the user intent signal
among items: (1) How do build a relationship beyond
pairwise connections in a session? Conventional GNNs are
designed to model the pairwise connections between items.
Obviously, simple graphs cannot depict such set-like relations
since we need to consider connecting various numbers of
items ranging from two to many. For instance, for Session
1 in Figure 1, the pairwise linkage between strawberry and
apple is not enough to reveal that the user’s intention is to
buy a variety of fruits. But such evidence could be inferred
by analyzing the triadic relations among strawberries, apples,
and pitaya as defined. To this end, we adopt the hypergraph
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Fig. 1. An example of hidden user intents is revealed by groups of items.
Three sessions are given, “Fruit” and “Fruit Cake” are user intents revealed
by grouping different consecutive items in the session. Items on the right are
possible items the user will click next under each intent.

[11], [12] structure to model the correlations amongst items
within each session. Each node denotes an item in a session
hypergraph, and a hyperedge connects the collection of items
that show up together within a session. This hypergraph
structure supports capturing correlations among items defined
by sessions, which could be arbitrary order depending on the
usage scenario; Meanwhile, The characteristics of hyperedge
perfectly fit our assumption as hyperedge is set-like, which
emphasizes coherence of the involved items rather than relative
orders. (2) How to associate among sessions? Figure 1
describes intra-session and inter-session relationships; some
items (e.g., apples and strawberries ) do not occur within a
single session but share their neighboring items for multiple
sessions, implying potential item correlations. Technically, we
first model each session as a hyperedge in which all the items
are connected with each other, and different hyperedges, which
are connected via shared items, constitute the hypergraph
that contains the item-level high-order correlations. We can
borrow the strengths of hypergraph convolution to generate
high-quality recommendation results.

To address the above challenges, we present a dual-view
collaboration graph neural network (DC-GNN) to exploit item
transitions over sessions in a more subtle manner by modeling
session-based data as a hypergraph for better inferring the user
preference of the current session. Intuitively, we propose to
learn two levels of item embeddings in our network, which
can be seen as two different views that describe the intra-
and inter- information of sessions, while each of them knows
little information about the other. To be concrete: (i) Graph
level, which is to learn the session-level item embedding by
modeling pairwise item transitions within the current session;
and (ii) Hypergraph level, which is to learn the global-level
item embedding by modeling beyond pairwise item transitions
across all sessions. Furthermore, we introduce hypergraph
and innovatively integrate self-supervised learning [13] into
our model to enhance hypergraph modeling. By maximizing
the mutual information between the session representations
learned via the two levels of the items embedding through self-

supervised learning, the model can force the embeddings of
views generated from the same sessions instance to be closer
to each other, while those from different instances apart.

The main contributions of this work are summarized as
follows:

« We present a dual-view collaboration graph neural network
(DC-GNN) by modeling session-based data as a hypergraph
for better inferring the user preference of the current session,
which can capture the beyond pairwise relations among
items through hypergraph modeling.

« We innovatively integrate a self-supervised task into the
training of our network to enhance hypergraph modeling
and improve the recommendation task.

« Extensive experiments show that the proposed framework
has overwhelming superiority over the state-of-the-art base-
lines and achieves statistically significant improvements on
benchmark datasets.

II. RELATED WORK

In this section, we review three main topics of previ-
ous research: the session-based recommendation, hypergraph
learning and self-supervised learning.

A. Session-based Recommendation

The initial exploration of SBR mainly focuses on sequence
modeling, where nearest neighbors [5], [14] and Markov
decision process [6] are the preferred technique at this phase.
While early methods are easy to implement, they do not
capture the sequential transition of items and only consider
the user’s last click. The boom of deep learning methods
brings significant performance gain on SBR [8], [15], [16].
Such as GRU4Rec [8], NARM [15], STAMP [16]. Though
deep learning methods have made promising results, they are
almost incapable of capturing the collective dependencies.
GNNs adopt graph structure to model item-transition patterns,
relaxing the strict order assumption over items by RNNs [1].
To capture the complex transitions over items within the entire
session, SR-GNN [17] was perhaps the first to consider GNN
for SBR. Other models [7], [9], [18] improved the performance
by considering different aspects of GNN, such as SR-GNN
[18], GCE-GNN [7]. Although significant progress has been
achieved, previous methods have not considered users’ mul-
tiple intents in learning session embeddings. They all fail to
capture the complex and higher-order item correlations. Our
proposed model employs graphs and hypergraphs to explore
the higher-order dependency of sessions and items.

B. Hypergraph Learning

Although the graph neural network approaches have
achieved successful results in capturing high-order relations in
various tasks, [11], [12], these approaches are only appropriate
in pairwise connections, which has limitation in expressing
complex structures of data [19]. Recently, constructing hy-
pergraphs to learn the data structure has become a popular
approach. A hypergraph is a generalization of a simple graph



in which a hyperedge can connect more than two nodes. Hy-
pergraph provides a natural way to model complex structures
of data with high-order relations and has been extensively
employed to tackle various problems [20]. Hayashi et al.
[21] propose a flexible framework for clustering hypergraph-
structured data based on recently proposed random walks
utilizing edge-dependent vertex weights. Xue et al. [22] de-
velop an unsupervised DualHGCN that transforms the bipartite
multiplex network into two sets of homogeneous hypergraphs,
along with intra- and inter-message passing strategies to pro-
mote information exchange within and across domains. Due
to this flexibility of hypergraphs, some studies have tried to
combine the hypergraph with the recommender systems to
improve their performances recently. Bu et al. [23] introduce
hypergraph learning to music recommender systems, which is
the earliest attempt. Li et al. [24] propose a novel architecture
named hyperbolic hypergraph representation learning method
for sequential recommendation (H?2SeqRec) with the pre-
training phase. Different from their works, our proposed model
exploits inter-hyperedge information and designs for session-
based scenarios.

C. Graph Contrastive Learning

Self-supervised learning’s success is figuring out a way
to leverage the tremendous amounts of unlabeled data that
becomes available to dig out the representation of general data.
Existing graph contrastive learning [12], [25] is a class of self-
supervised approaches that train an encoder to measure the
divergence in latent space by contrasting samples from a distri-
bution that contains depict statistical dependencies of interest
and those that do not [26]. The main idea of graph contrastive
learning is to treat each sample as a distinct category and learn
how to distinguish them [25]. For instance, [27] proposes Sub-
con by utilizing the strong correlation between central nodes
and their sampled subgraphs to capture regional structure
information, which is a novel data augmentation strategy. [11]
developed contrastive learning with augmentations to address
the challenge of data heterogeneity in graphs. The theoretical
analysis sheds light on the reasons behind their success [12].
Objectives used in these methods can be seen as designing
different graph augmentation strategies to enhance the graph
representation. As for our work, we combine graph contrastive
learning with multi-view semi-supervised learning for the
recommendation. It gives us clues about applying training to
the session-based recommendation.

III. PRELIMINARIES

Notations. Given a set of sessions S =
{sW, s@ ... )L over a set of items I =
{i1,42, - ,in}, where N is the number of items. An

arbitrary session s € S is represented as a sequence
$ = [is1s0s2, " yis ks »is,m| ordered by timestamps
with a length m. Here, i5;, € Z(1 <k < m) represents an
interacted item of an anonymous user within the session s.
For simplicity, we embed each item ¢ € Z into the same
space and let ! € R4 denote the representation of item ¢ of

dimension d*) in the I-th layer of a deep neural network. By
stacking P sessions, let X € RP xd denote a session-item
interaction matrix, where P is the number of sessions. Each
session s is represented by a vector s.

Problem Formulation. Here we give a formulation of
session-based recommendations problem: The goal of person-
alized session-based recommendation is to predict the next
item, namely ¢ ,,4+1, for any given session s. Specifically,
given Z and s, the output of recommendation model is trained
to generate a ranked list y = [y1,y2, - ,yn] of top-K
candidate items as the recommended next items, where y;
corresponds to the score of item ¢ and the top-K items
(1 < K < N) with highest score in y will be selected as the
recommendations.

Hypergraph Definition. A hypergraph [9] is defined as G}, =
(V, E, W), which includes a vertex set V' containing /N unique
vertices, a hyper-edge set I/ containing M hyper-edges. Each
hyper-edge contains two or more vertices and is assigned with
a weight by W, and all the weights formulate a diagonal matrix
W ¢ RM*M The hypergraph can be denoted by an incidence
matrix H € RV*M  with entries defined as:

1 if
hoe =4 HVEC )
0 ifvéde

For each vertex and hyper-edge, their degree D, and B..
are respectively defined as D,, = Zfi 1 Weehye; Bee =
25:1 hye. D and B are diagonal matrices.

IV. THE PROPOSED METHOD

We propose a novel dual-view collaboration graph neural
network (DC-GNN) for Session-based Recommendation. DC-
GNN aims to exploit both graph-view and hypergraph-view
beyond pairwise item transitions for modeling the user prefer-
ence of the current session. Figure 2 presents the architecture
of DC-GNN, which comprises four main components: 1)
Graph-view item representation. It aims to explore the user in-
tent interest flow relation between items. 2) Hypergraph-view
item representation. We can learn the intra- and inter-session
dependencies between items. 3) Contrastive learning. We em-
ploy contrastive learning to maximize the mutual information
between the item representations learned via the two views to
alleviate the sparsity of session data. 4) Prediction. It models
the user preference of the current session by aggregating the
learned item representations in both graph-view and global-
level. It outputs the predicted probability of candidate items
for recommendation. We next present the four components in
detail.

A. Graph-view item representation

Graph Construction.  We first construct a mean-
ingful graph from all sessions. Given a session s =
[is,1,%5,2,  y0s ks * »4s,m|, We treat each item i,y as a
node and (is,%sk+1) as an edge that represents a user
clicks item i, after ¢s 341 in the session s. Subsequently,
the graph view is educed by aligning all sessions. In other
words, any two items ((iskand is;4+1) which are connected
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Fig. 2. An overview of the proposed framework. Firstly, DC-GNN learns two levels of item embeddings from graph view and hypergraph view, respectively.
(i) graph view, any two items connected in a session also get connected as nodes in the graph view with a weighted edge, counting how many times they are
adjacent in different sessions. (ii) hypergraph view transforms each session into a hyperedge, in which any two items clicked in a session are connected to
each other. Then we use contrastive learning to recursively leverage the different connectivity information to generate item embeddings from the two views
to supervise each other. Finally, we learn the contribution of each item to the next predicted item in the prediction layer. Candidate items will be scored.

in a session also get connected as nodes in the item view with
a weighted directed edge, counting how many times they are
adjacent in different sessions(shown in the left part of Figure
2). Furthermore, if a node does not contain a self-loop, it will
be added with a self-loop with a weight of 1. Based on our
observation of our daily life and the datasets, it is common
for a user to click two consecutive items a few times within
the session.

Graph Neural Network Layer. An item may be involved
in multiple sessions, from which we can obtain useful item-
transition information to effectively help current predictions.
We first convert each item 7 € Z into a unified embedding
latent space and let z! € R4 denote the representation of
item 4 of dimension d") in the [-th layer of a deep neural
network. Then a simplified graph convolution layer for the
graph view is defined as:

XUt = o (D, "A, XD WD) 2)
where g means in the graph view and lA)g}Xjﬁj =3 Ag)j’k
is the degree matrix. A; = Ay + 1, Ay and I are the
adjacency matrix and the identity matrix, respectively. W;l)
denotes the parameter matrix and Xgl) represents the [-th
layer’s item embeddings. o(.)is a nonlinear activation function
such as Sigmoid or ReLU. After passing through L graph
convolutional layer, we obtained the final item embeddings
X, for the following process.

B. Hypergraph-view item representation

Hypergraph Construction. A traditional graph can only
represent the pairwise relationships between any two nodes.

However, in the real world, there will be much more com-
plex relationships like list-wise relationships than pairwise
relationships [28]. To capture the beyond pairwise relations
in the session-based recommendation, we adopt a hypergraph
Gy = (V, E, W) to denote each session as a hyperedge. For a
more rigorous description, we define each item i, ,, € V' and
each hypergraph as € = [is 1,952, " ,isk " »bs,m] € F.
We transform the session’s data structure into hypergraph
construction, as shown in the left part of Figure 2. Compared
with traditional graphs that mainly rely on pairwise items
as linear sequences, hypergraphs can model higher relations
in item interactions. For example, two items s %5 k41 are
connected only if a user interacted with item ¢ ; before
s,k+1- Any two items clicked in a session are connected
when we transform the session data into a hyperedge of a
hypergraph. It should be noted that items in a session are
temporally related instead of sequentially dependent. Besides,
if we use a traditional graph, the graph is hard to reveal
different item semantics in different sessions directly. Recall
back to the previous instance that the strawberries in session
1 and session 2 reveal users’ different intentions in Figure 1,
while hypergraph is beneficial for dealing with the issue.

Hypergraph Neural Network Layer. After the hypergraph
construction, we develop a hypergraph neural network to
capture both the item-level high-order relations. The primary
challenge of defining a convolution operation over the hyper-
graph is how the embeddings of items are propagated. Figure
2 illustrates the details of the hypergraph neural networks.
Multiple hyperedge structure groups are constructed from the
complex correlation of the multi-sessions. We concatenate
the hyperedge groups to generate the hypergraph adjacent



matrix H. The hypergraph adjacent matrix H and the item
embedding are fed into the hypergraph neural network to
propagate high-order relations among items. Referring to the
spectral hypergraph convolution proposed in [29], we can build
a hyperedge convolutional layer in the following formulation:

XY = o(D, HWB'HTX{" o) 3)

where h means in the hypergraph view and X;Ll) represents
the I-th layer’s item embeddings. o(.) denotes the nonlinear
activa}ti_oln function. ©) is the learnable filter matrix. Denote
that D, play a role of normalization.

Here, we further investigate item embedding in the property
of exploiting high-order correlation among data. The hyper-
graph convolution can be viewed as a two-stage perform-
ing ‘node-hyperedge-node’ feature transformation, which can
better refine the features using the hypergraph structure. More
specifically, at first, the initial item embedding X;Ll ) is pro-
cessed by a learnable filter matrix O . Then, the item features
are gathered according to the hyperedge to form the hyperedge
feature, which is implemented by the multiplication of H” . Fi-
nally, the output node feature is obtained by aggregating their
related hyperedge feature, which is achieved by multiplying
matrix H. Thus, the hypergraph layer can efficiently propagate
the high-order correlation on the hypergraph by the node-
edge-node transform. After passing through the L hypergraph
convolutional layer, we obtained the final item embeddings X},
for the following process.

C. Contrastive learning

As session-based data can be modeled as graphs, there also
has been a proliferation of GNNs-based models for SBR with
decent improvements. Despite the achievements, however,
these approaches are still compromised by the same issue
— data sparsity [30]. In most cases, these data are too few
to induce an accurate user preference, leading to sub-optimal
recommendation performance. Contrastive learning (CL) [31],
being popular in self-supervised learning, which discovers
ground-truth samples from the raw data, is considered to
be an antidote to the data sparsity issue. Inspired by the
successful practices of self-supervised learning on graphs, we
innovatively integrate contrastive learning into the network to
enhance hypergraph modeling. We first derive two different
views from the session data, i.e., graph view and hypergraph
view in the above described, by exploiting sessions’ intra- and
inter-connectivity patterns. These two views are able to pro-
vide complementary information for each other while keeping
independent and exhibiting divergence to some degree. The
augmented parts differ but inherit essential information from
the original data, which can help learn more generalizable
representations through a self-supervised task.

To enforce maximizing the consistency between positive
pairs {X,, X} compared with negative pairs, we adopt the
noise-contrastive estimation loss [32]. For each mini-batch
including n sessions in training, if two-session embeddings
both denote the same session in two views, we label this
pair as the ground truth {X,, X}, }, otherwise, we label it as

the negative samples Xj. then we employ a similarity metric
function sim(-,-) to calculate the similarity of positive pair
{Xy,X},} and the negative pair {X},, X }. Based on this, the
loss function is as follows:

exp(sim(Xy,Xy)/7)
exp(sim(Xy,Xn)/7) + exp(sim(X, Xk)/z'4))

Lyce = —log

where 7 denotes the temperature parameter. To simplify the
calculation, we use dot product as the similarity metric func-
tion sim(-,-). By doing so, they can acquire information from
each other to improve their own performance in item feature
extraction through the convolution operations. Particularly,
those sessions that only include a few items can leverage the
cross-session information to refine their embeddings.

D. Prediction

Session embeddings can be represented by the aggregating
representation of items in that session. We follow the strategy
used in SR-GNN [17] to refine the embedding of session s.
Consider information in these embedding may have different
levels of priority, we further adopt the soft-attention mecha-
nism to better represent the The embedding of ¢-th item in
session § = [ig1,%s,2," "

ylsksy " 718,771]:

m

ar=q o (Wix; + Wox; +¢),0h = Y axi (5
t=1

1
X: = tanh (WgXt + b) ,X: = E Z Xm (6)

where m is the length of the current session.
{W1, Wy, W3} € R4 b, ¢} € R? are attention parameters.
q € R? is the attention parameter used to learn the item
weight ay. xj is the embedding of the ¢-th item in session
s, and x} is the embedding of session s and here it is
represented by averaging the embeddings of items it contains.
User’s general interest embedding 6 across this session
is represented by aggregating item embeddings through a
soft-attention mechanism where items have different levels of
priorities.

After obtained the embedding of each session, we compute
the score Z; for each candidate item ¢ € Z by doing inner prod-
uct between the item embedding X;, learned from hypergraph
channel and 6;,:

7; = 0] x; (7)

After that, a softmax function is applied to compute the
probabilities of each item being the next one in the session:

y = softmax(z) (8)

For each session graph, the loss function is defined as the
cross-entropy of the prediction and the ground truth. It can be
written:

N
Lo=—3 yilog(y) + (1 —y)logl —¥) ()
=1

where y is the one-hot encoding vector of the ground truth.



TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

Statistics Tmall Nowplaying  RetailRocket  Diginetica ~ Yoochoosel/64  Yoochoosel/4
# Sessions (Training) 351,268 825,304 433,643 719,470 369,859 5,917,745
# Sessions (Testing) 25,898 89,824 15,132 60,858 55,898 55,898

# Items 40,728 60,417 36,968 43,097 16,766 29,618
Avg. Length of Sessions 6.69 7.42 543 5.12 6.16 5.71

Finally, we unify the recommendation task and this self-
supervised task into a joint learning framework and combine
Eq.(5) and Eq.(10) to get the total loss function:

Liotal = Lt +aLNcE (10)

where a € [0, 1] is initialized as O and gradually learns to
assign more weight, which controls the magnitude of the self-
supervised task.

V. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the proposed DC-GNN. The experiments are unfolded by
answering the following four key research questions:

¢ RQ1: Does DC-GNN outperform state-of-the-art SBR base-
lines in real world datasets? (See Section 5.2)

« RQ2: How do different components of our model, such as
the hypergraph convolution or graph convolution mecha-
nism, affect the performance? (See Section 5.3)

« RQ3: Is the proposed model sensitive to hyperparameters?
How do different hyper-parameter settings (e.g., number
of hypergraph convolutional layers) affect the DC-GNN’s
accuracy? (See Section 5.4)

« RQ4: How well does DC-GNN deal with different length
of the sessions? (See Section 5.5)

A. Experimental Protocol

Datesets. We employ five real-world benchmark datasets,
namely, Tmall', Nowplaying®, RetailRocket, Diginetica®, Yoo-
choose’, which are often used in session-based recommenda-
tion methods. Particularly, Tmall dataset comes from [JCAI-15
competition, which contains anonymized user’s shopping logs
on Tmall online shopping platform. Nowplaying dataset comes
from [33], which describes the music listening behavior of
users. RetailRocket is a dataset on a Kaggle contest published
by an e-commerce company, which contains the user’s brows-
ing activity within six months. Diginetica dataset contains
sessions of product transaction data from an online retailer
and was released as part of the 2016 CIKM Cup. Yoochoose
dataset is obtained from the RecSys Challenge 2015, which
contains a stream of user clicks on an e-commerce website
within 6 months.

Uhttps://tianchi.aliyun.com/dataset/dataDetail ?datald=42
Zhttp://dbis-nowplaying.uibk.ac.at/#nowplaying
3https://www.kaggle.com/retailrocket/ecommerce-dataset
“https://competitions.codalab.org/competitions/11161
Shttp://2015.recsyschallenge.com/challege.html

Data Preprocessing. For fair comparison, following
[71, [171, [34], we conduct preprocessing step over
the five datasets. More specifically, sessions of length
1 and items appearing less than 5 times were filtered
across all the five datasets. Latest data (such as, the
data of last week) is set to be test set and previous
data is used as training set [7]. Furthermore, similar
to [9], we generate sequences and corresponding
labels by a sequence splitting preprocessing, i.e.,

([is,l] 7is,2) 3 ([Z.s,la Z‘s,2] 71'5,3) 3T ([is,la is,27 e 7is,m—1] ;is,m),

for every session s = [is1,%s,2,%s,3, " ,is,m|, Where the
label of each sequence is the last click item in it. However,
because the Yoochoose training set is quite large and training
on the recent fractions yields better results than training on
the entire fractions as per the experiments of [35]. As in [7],
[17], [34], we sort all of the training sequences generated
from Yoochoose, and retrieve the most recent 1/64 and 1/4 to
be the training samples in Yoochoosel/64 and Yoochoosel/4.
In addition, the training samples and testing samples in all
of the five datasets are exactly the same as in [7], [9], [17],
[34]. The statistics of the six datasets are presented in Table
I, where dataset Yoochoosel is sampled into Yoochoosel/64
and Yoochoosel/4.

Baseline Methods. The following models, including the
state-of-art and closely related works, are used as represen-
tative baselines to evaluate the performance of the proposed
model. They are Item-KNN [5], FPMC [6], GRU4Rec® [8],
NARM’ [15],STAMP? [16],SR-GNN° [17],FGNN'® [36],
GCE-GNN [7],52-DHCN'! [9].

Evaluation Metrics. As recommender systems can only
recommend a few items at once, the actual item a user might
pick should be amongst the first few items of the list [8].
To keep the same setting as previous baselines, we adopt
two widely used ranking based metrics: P@K and MRR@K
by following previous work [7], [9], [36]. Specifically, we
mainly choose to use top-10 and top-20 items to evaluate a
recommender system.

Hyper-parameters Setup. Following previous methods
[71, [9], [36], the dimension of the embedding size is fixed
to 100, and the batch size for mini-batch is set to 100 for all
models. We also set the Lo regularization to 10~° and keep

Shttps://github.com/hidasib/GRU4Rec
7https://github.com/lijingsdu/sessionRec_NARM
8https://github.com/uestcnlp/STAMP
“https://github.com/CRIPAC-DIG/SR-GNN.
10https://github.com/RuihongQiu/FGNN.
https://github.com/xiaxin1998/DHCN.



TABLE II
COMPARISON OF DIFFERENT MODELS, THEIR RESULTS ARE OBTAINED FROM THE CORRESPONDING ORIGINAL PAPERS. ALL THE RESULTS ARE IN
PERCENTAGE (%). THE BEST PERFORMING METHOD IN EACH COLUMN IS BOLDFACED, AND THE SECOND-BEST METHOD IS MARKED WITH f.

I Tmall I Nowplaying I RetailRocket
Methods | P@10 MRR@10 P@20 MRR@20 || P@I0 MRR@I0 P@20 MRR@20 | P@I0 MRR@I0 P@20 MRR@20
. Item-KNN || 6.65 3.11 9.15 331 10.96 4.55 15.94 4.91 - - - -
Traditional | ppnpC 13.10 7.12 16.06 7.32 5.28 2.68 7.36 2.82 25.99 1338 3237 13.82
GRU4Rec || 947 578 10.93 5.89 6.74 4.40 7.92 448 3835 2327 4401 23.67
RNNs NARM 19.17 1042 2330 10.70 13.60 6.62 18.59 6.93 4207 2488 5022 2459
STAMP || 22.63 1312 2647 13.36 13.22 6.57 17.66 6.88 4295 2461 5096  25.17
SR-GNN | 2341 1345 2757 13.72 14.17 7.15 18.87 747 4321 2607 5032 2657
FGNN 20.67 1007 2524 10.39 13.89 6.80 18.78 7.15 4256 2624 4986 25.88
GNNs GCE-GNN || 28011 15081 3342 15427 | 1694  803% 2237  840f - - - -
S2-DHCN || 26.22 1460 3142 15.05 17357 787 23507  8.18 46.15f  26.85f  53.667  27.30%
| Ours | 3201 1822 3854 1878 | 17.89 8.23 24.12 889 || 4885 3032 5658  30.05
TABLE III

COMPARISON OF DIFFERENT MODELS, THEIR RESULTS ARE OBTAINED FROM THE CORRESPONDING ORIGINAL PAPERS. ALL THE RESULTS ARE IN
PERCENTAGE (%). THE BEST PERFORMING METHOD IN EACH COLUMN IS BOLDFACED, AND THE SECOND-BEST METHOD IS MARKED WITH 7.

| Diginetica | Yoochoose 1/64 I Yoochoose 1/4
Methods | P@I0 MRR@I0 P@20 MRR@20 | P@I0 MRR@I0 P@20 MRR@20 | P@I0 MRR@I0 P@20 MRR@20
B Item-KNN || 25.07 10.77 35.75 11.57 - - 51.60 21.81 - - 5231 21.70
Traditional FPMC 1543 6.20 26.53 6.95 - - 45.62 15.01 - - 51.86 17.50
GRU4Rec || 17.93 733 29.45 8.33 50.04 22.64 60.64 22.89 49.68 22.84 59.53 22.60
RNNs NARM 35.44 15.13 49.70 16.17 57.50 27.97 68.32 28.63 57.83 28.10 69.73 29.23
STAMP 33.98 14.26 45.64 1432 58.07 28.92 68.74 29.67 59.62 29.24 70.44 30.00
SR-GNN || 36.86 15.52 50.73 17.59 60.21 30.13 70.57 30.94 6128+  30.65t 7136 31.89
FGNN 37.72 15.95 50.58 16.84 60.97+ 3085 7112 3168 61.25 3048 7197f  32.54%
GCE-GNN || 41.16F  18.15¢ 5422  19.04% 5968  3095¢  70.58 3112 59.66 30.12 69.28 30.35
GNNs S2-DHCN || 4021 17.59 53.66 18.51 59.38 29.17 69.87 29.86 60.54 29.05 69.95 29.85
| Ours | 4228 18.91 55.03 1967 || 6152 31.56 71.85 3159t || 6172 3173 72.38 32.61

the hyper-parameters of each model consistent for a fair com-
parison. In our model, all weighting matrices are initialized
by sampling from a normal distribution N (0, 0.052), and all
biases are set to zeros. All the item embeddings are initialized
randomly with the Gaussian Distribution N (0,0.1), which
are then jointly trained with other parameters. We use Adam
optimizer with the initial learning rate 0.001, which will decay
by 0.1 after every 3 epochs. In addition, the number of layers
is different in different datasets. For Diginetica, a two-layer
setting is the best, while for Nowplaying, a four-layer setting
achieves the best performance. We train each model for 30
epochs or until the loss no longer decreases after 5 epochs.

B. Overall Comparison (RQI)

To demonstrate the performance of the proposed model,
we compare it with the state-of-the-art item recommendation
approaches, illustrated in Table II and Table III. We have
the following observations: 1) Overall, from the two tables,
we can see that our proposed model consistently shows
strong performance across all datasets in terms of the two
metrics (with K=10 and 20), which ascertains our proposed
method’s effectiveness. Especially on the Tmall dataset, we
note that existing baselines have already obtained high enough
performance; our method still pushes that boundary forward.
2) Compared with traditional and RNN methods, our model

has achieved remarkable performance. Those demonstrate that
our proposed model converts the sequential item transitions
into graph-structured data for capturing the inherent order of
item-transition patterns. This strategy performs strong data
representation in constructing relations dependency between
sessions, leading to better performance. 3) We also notice
that our method achieves more competitive results compared
with graph-based baselines. Particularly, it beats other models
by a large margin on Tmall, showing the effectiveness of
the self-supervised graph and hypergraph co-training when
applied to real e-commerce data. 4) Considering that S2-
DHCN and our method both have a two-branch architecture,
we think that the improvements mainly derive from the differ-
ent contrastive learning. We employ two graph structure types
(i.e., graph and hypergraph) to encode the item embedding
for contrastive learning. While S2-DHCN uses the two types
of hypergraph to conduct sessions embedding for contrastive
learning. Compared with another strong baseline GCE-GNN,
DC-GNN is competitive in performance and efficiency. DC-
GNN outperforms the GCE-GNN by 4% on Tmall and 1-2%
on other datasets on average. Besides, our DC-GNN is more
lightweight than GCE-GNN because GCE-GNN with a more
complex structure makes it suffer from the out-of-memory
problem when performing on RetailRocket on our RTX 3080
GPU. At the same time, we use very limited hypergraph
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Fig. 3. Ablation Study.

convolution and graph-convolution parameters, showing the
efficiency of DC-GNN.

C. Study Ablation (RQ2)

In this section, we conduct experiments on three datasets to
investigate the contribution of each component in our model.
Specially, we design four variant versions of DC-GNN:

« OHG: We only use the hypergraph view to encode item
embedding to model session data, removing the graph view
and the self-supervised contrastive learning.

¢ OG: We only use the graph view to encode item embedding
to model session data, removing the hypergraph view and
the self-supervised contrastive learning.

« NP: We remove the reversed position embeddings.

o NSSL: We remove the self-supervised contrastive learning
and replace it with averaging item representations of the two
views.

Due to the space limitation, we choose Tmall, Nowplaying,
and Diginetica datasets as examples and conducted experi-
ments. To compare them under different conditions, we report
their performance under two metrics (with K=20). We show
the results of these four variants in Figure 3. From Figure 3,
we can observe that each component consistently contributes
to three datasets. (1) The self-supervised contrastive learning
improves the base model the most, serving as the driving
force of performance improvement. When removing the self-
supervised contrastive learning, we can observe a remarkable
performance drop on both two metrics. (2) Furthermore, OHG
can achieve better performance than OG, which shows the
effectiveness of the hypergraph structure and the necessity
of modeling the contextual relations for item representation
learning. (3) Besides, the two views are effective to achieve
better performance than the single view in three datasets,
which indicates that two-view can cooperate and have mutual
complementarity. (4) According to the results of NP, it is
shown that learning different item importance across sessions
is better than directly averaging representations of contained
items for learning session representations in the session-based
recommendation. (5) Overall, DC-GNN can outperform all of
its variants for K=20 values, indicating the effectiveness of
its design for the session-based recommendation.

D. Hyper-Parameter Analysis. (RQ3)

In this section, we present the sensitivity analysis of two
critical hyper-parameters The DC-GNN model employs a
hyper-parameter « to control the magnitude of self-supervised
learning and hypergraph convolutional network’s depth N in
the session-based recommendation. For brevity, we conducted
the experiments on two datasets: Nowplaying and Diginetica.
Additionally, the default parameter settings of the analysis are
a=0.05 and N=3. To be strict, when we tested the hyper-
parameters specific to DC-GNN, the other parameters were
set to the default settings. Finally, to compare them under
different conditions, we report their performance under two
metrics (with K=20).

o Impact of Self-Supervised Learning. In our approach,
we can control the magnitude of self-supervised learning by
changing the weight term «.. We respectively tune the factor
in a range of {0.01,0.05,0.1,0.5,1}, and the results are
illustrated in Figure 4, According to the results presented in
Figure 4, recommendation task achieves decent gains when
jointly optimized with the self-supervised task. With the rise
of «, the performance increases first and then declines. We
think it is due to the gradient conflicts between the two
tasks. Besides, when o = 0.1, we get the best performance.

« Impact of the number of layers. We further explore the
sensitivity of the hypergraph convolutional network’s depth
in graph view channels. We stack multiple Hypergraph lay-
ers to model the information flowing among items with high-
order dependencies. To visualize the high-order information
propagation, we show the results in Figure 3 by ranging
the number of layers of the network within {1,2,3,4,5}.
In each dataset, starting with a single hypergraph layer,
we improve the performance by stacking one more layer,
indicating the importance of modeling the information via
high-order connections. For the Diginetica dataset, stacking
more than three layers will worsen the performance since the
sessions in this dataset are generally short. Using too many
layers will bring in noise for the representation learning
process. Meanwhile, our model gets the best performance
in the Nowplaying dataset when the number of layers N=4.
Thus, we conclude that DC-GNN can capture the direct and
high-order connections among items in the hypergraphs.
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TABLE IV
THE PERFORMANCE OF DIFFERENT METHODS WITH DIFFERENT SESSION LENGTHS EVALUATED IN TERMS OF P@20. ALL THE RESULTS ARE IN
PERCENTAGE (%). THE BEST PERFORMING METHOD IN EACH COLUMN IS BOLDFACED.

[ Tmall I Diginetica I Yoochoose 1/64
Methods || Short Session  Long Session || Short Session ~ Long Session || Short Session ~ Long Session
SR-GNN 38.62 28.14 50.49 51.27 71.44 60.73
FGNN 39.13 30.57 51.26 52.42 71.21 70.80
GCE-GNN 42.28 34.22 54.40 52.16 70.42 69.68
DHCN 36.47 31.73 53.29 52.43 70.81 68.54
Ours || 4481 14 | 5621 5414 || 7254 69.77

E. Analysis on Session Lengths. (RQ4)

In real-world situations, sessions of various lengths are
common. How to infer user interest based on different sessions
lengths is an important indicator to measure the performance
of the model, and it is also a critical indicator for production
environments. We further analyze the capability of different
models to cope with sessions of different lengths. To evalu-
ate this, we follow the works [17], [36], and split sessions
of Tmall, Diginetica, and Yoochoosel/64 datasets into two
groups, where “Short” indicates that the length of sessions is
less than or equal to 5, while each session has more than 5
items in “Long.” For each graph-based method, we report the
results evaluated in terms of P@20 in Table IV. In the aspect
of both Short and Long sessions, DC-GNN achieves almost
the best performance compared with other graph embedding
generators. It demonstrates the adaptability of our model in
real-world session-based recommendations. However, since
the percentage of long sessions is low in real-world datasets for
a session-based recommendation, the main purpose is to boost
the recommendation for sessions with fewer items. Besides, it
also demonstrates the performance of our model in the short
sessions is better than that in the long sessions.

VI. CONCLUSION

In this paper, we present a dual-view collaboration graph
neural network (DC-GNN) by modeling session-based data
as a hypergraph for better inferring the user preference of
the current session which can capture the ubiquitous high-
order correlations among items. Moreover, to further enhance
the network, we innovatively integrate self-supervised into

the network’s training. Extensive empirical studies demon-
strate the superiority of the proposed model over the current
SOTA methods, and the results validate the effectiveness of
hypergraph modeling. Meanwhile, the research of hypergraph
modeling for SBR remains in its infancy, and their application
in GCNs has potential development, which is worthy of our
further exploration.
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