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Abstract—Historical Quality-of-Service (QoS) data regarding 
past user-service invocations are vital to understand the user 
behaviors and cloud service conditions. A matrix factorization 
(MF)-based collaborative filtering (CF) model has proven to be 
highly effective in performing representation learning to such 
QoS data. However, its performance is hindered by its linear 
interaction and implicit encoding of collaborative QoS signal. To 
address this critical issue, this paper presents a Two-stream 
Light Graph Convolution Network-based latent factor (TLGCN) 
model with the three-fold ideas: 1) constructing a multilayered 
and fully-connected network to represent services’ nonlinear 
latent features; 2) integrating the user-service interactions, i.e., 
the bipartite graph structure into the representation learning 
process with a light graph convolution network for illustrating 
the high-order connectivity information in QoS data; and 3) 
incorporating the data density-oriented modeling mechanism 
into the input and output of TLGCN for high computational 
efficiency. Experimental results on two real QoS datasets 
demonstrate that the proposed TLGCN model significantly 
outperforms its state-of-the-art peers in both estimation accuracy 
for missing QoS data and computational efficiency. 

Keywords—Quality-of-Service, Representation Learning, Data 
Science, Cloud Service, Missing Data Estimation, Graph Neural 
Network, Non-Euclidean Data.  

 

I. INTRODUCTION 

In industrial software applications based on service-
oriented architectures [1-3], cloud services are taken as the 
fundamental components to achieve easy exchange of data 
among them over the World Wide Web. With this era of cloud 
computing, more and more service providers serve their 
customers by deploying cloud services, i.e., the number of 
online cloud services are explosively increasing [4-6]. And 
owing to the highly similar functionality of available candidate 
cloud services, it becomes a vital challenge for users to select 
appropriate ones and build a reliable system [7, 8]. 

Most nonfunctional characteristics of cloud services can be 
reflected by Quality-of-Service (QoS) data at both server and 
user sides [9-13], which is critical to service selection. Server-
side QoS data, e.g., popularity and price, can be directly 

provided by service providers. On the other hand, user-side 
data, e.g., response time and throughput, vary greatly among 
different users depending on many factors [13-15], e.g., 
invoking environment. Warming-up tests is a straightforward 
approach to retrieve user-side QoS data by actually invoking 
each cloud service [1-3]. However, owing to the large number 
of candidate cloud services and charged commercial service 
invocations in most cases, to perform such warming-up tests is 
very time-consuming and expensive thereby impractical.   

Motivated by the success of collaborative filtering (CF) in 
e-commerce, researchers employ this technique to implement 
QoS estimation aiming at efficiently and accurately estimating 
missing QoS data based on historical ones [16-24]. A CF-based 
QoS estimator works on a given user-service QoS matrix, 
where the information of users, cloud services and their 
corresponding invocations are recorded in its rows, columns 
and entries, respectively. In real-world scenarios, the target 
QoS matrix is highly sparse owing to the fact that a user 
typically experiences just a very limited number of candidate 
cloud services [1-3, 16]. Hence, how to perform efficient and 
accurate representation learning based on such a highly sparse 
user-service matrix is the major problem of CF-based QoS 
estimation. 

Among various CF-based QoS estimators, a matrix 
factorization (MF)-based latent factor analysis (LFA) model 
has proven to be effective in performing representation 
learning to QoS data [16, 20-28]. It works by mapping both 
users and services into a low-rank latent feature space to 
extract their latent features based on the known entries in a 
target user-service QoS matrix, and then perform inner 
products of corresponding latent features of users and cloud 
services to obtain the missing entries. Zhu et al. [20] 
incorporate a similarity-maintaining privacy preservation 
strategy into their location-aware low-rank matrix factorization 
model to achieve reliable and accurate QoS estimation. Luo et 
al. [25] adopt the principle of alternating direction method and 
ensemble mechanism to build an effective matrix factorization-
based QoS estimator. Yang et al. [27] consider the correlation 
between users and services, i.e., incorporate their neighborhood 
information into the factorization process for accurate QoS 
estimation. Ryu et al. [23] propose a matrix factorization-based 



preference propagation approach to use the fused invocation 
and neighborhood similarity information for addressing the 
cold start problem in QoS estimation. Wu et al. [28] propose a 
density peaks-based clustering method to detect the 
neighborhood and noises of QoS data for achieving a data-
characteristic-aware QoS estimator. 

Despite their effectiveness, existing matrix factorization-
based LFA methods possess inherent deficiencies. As depicted 
in Fig. 1, the user-service interaction graph contains the 
attribute characteristics of users/services and high-order 
connectivity information. MF-based LFA models adopt inner 
product to combine the multiplication of the latent feature 
vectors of users and services, whose linear nature limits to fully 
capture the implicit information in them. Apart from this, they 
cannot well handle the non-Euclidean structure in QoS data, 
i.e., suffer the unavailability of leveraging the high-order 
connectivity information, resulting in extremely sparse 
collaborative QoS signals and inevitable accuracy loss.  

Considering the great potential of graph convolutional 
networks (GCNs) to address the non-Euclidean data in other 
fields [28-32] and the unique attribute characteristics of user-
service QoS data, this paper presents a Two-stream Light 
Graph Convolution Network-based latent factor analysis 
(TLGCN) model to perform highly accurate and efficient 
representation learning for QoS data with the following three-
fold fundamental ideas: 
(1) Constructing a cloud service-oriented multilayered and 

fully-connected network to learn high level of services’ 
nonlinear latent features; 

(2) Integrating the user-service interactions, i.e., the bipartite 
graph structure into the representation learning process with 
a light graph convolution network for illustrating high-
order connectivity information; 

(3) Incorporating the data density-oriented modeling principle 
into the input and output of TLGCN for high computational 
efficiency. 

To summarize, this paper achieves the following main 
contributions: 

(1) Proposing a TLGCN model with high representation 
learning ability for cloud service QoS data in both 
estimation accuracy and computational efficiency; 

(2) Conducting extensive empirical studies on two commonly-
adopted real QoS datasets to evaluate the TLGCN model. 

To the best of our knowledge, the proposed TLGCN model 
significantly outperforms its state-of-the-art peers in both 
estimation accuracy for missing cloud service QoS data and 
computational efficiency.  

The remainder of this paper is organized as below. Section 
II presents the preliminaries. Section III describes the TLGCN 
model. Section IV gives the experimental results. In the end, 
Section V concludes this paper. 

II. PRELIMINARIES 

Table I summarizes the adopted notations of this paper. 
Note that a QoS matrix describing the relationship among user 
set and service set is the fundamental input for an LFA-based 
QoS estimator, which is defined as [9-13, 16-24]:  
Definition 1. A QoS matrix. Given a user set U and a service 
set S, Q|S|×|U| is a QoS matrix where each element qs,u describes 
a QoS record of invocation by u∈U on s∈S. 

Since a user usually invokes only a very limited number of 
candidate cloud services, Q is incomplete. Let Λ and Ο denote 
the known entry set and unknown one, an LFA-based QoS 
estimator is defined as [16-24]: 
Definition 2. An LFA-based QoS estimator. Given Q, an 
LFA-based QoS estimator builds Q’s rank-F approximation Q̂ 

only based on Λ, generating an estimate q̂s,u for specified s∈S 
and u∈U such that ∑q

 

s,u∈Λ(qs,u−q̂s,u)2 is minimized. 
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Fig. 1. An illustrative example of the attribute characteristics (e.g., response 
time and throughput) and high-order connectivity information in a user-
service interaction graph. 

TABLE I.  SYMBOL APPOINTMENT 

Symbol Description 

U, S Concerned user and service sets. 
Q An |S|×|U| QoS matrix between U and S. 

Λ, Ο Known and unknown entry sets of Q. 
F Latent feature space dimension. 
Q̂ Q’s rank-F approximation. 

qs,u, q̂s,u Single entries in Q and Q̂. 
K Number of hidden layers of fully-connected network. 
Hk |S|×D services’ nonlinear latent feature matrix in the k-th layer. 

h
k 

s,f Single entries in Hk
. 

Wk, Bk Weight matrix and bias vector of k-th hidden layer. 
wk 

d,f, b
k 
f  Single variables in Wk and Bk. 

A (|U|+|S|)×(|U|+|S|) adjacency matrix of the user-service graph. 
D A’s degree matrix. 
Ã A’s symmetrically normalized matrix. 
L Number of propagation layers of light graph convolution. 
El (|U|+|S|)×D combined feature matrix of l-th convolution layer. 

el 
u, e

l 
s  Latent features of u and s in the l-th graph convolution layer. 

M, N Resultant latent feature matrices of users and services. 
ms,f, nu,f Single entries in M and N. 

C Bias vector of the output layer. 
cu Single variables in C. 
|∙| Cardinality of the involved set. 

ak(∙) k-th layer activation function. 
ε Loss function. 

N(s), N(u) Neighborhood sets of s and u. 
Λ(s), Λ(u) Subsets of Λ related to each s and u in Q. 

Ψ Testing set from Λ. 
αl Weight of l-th graph convolution layer features in E. 
ω Hyper parameter controlling the importance of E and HK. 



III. A TLGCN MODEL 

In this section, we introduce the proposed TLGCN model, 
which can be divided into User-oriented TLGCN (U-TLGCN) 
and Service-oriented TLGCN (S-TLGCN). Note that they 
enjoy the same structure and the only difference between them 
is the former takes each user’s records regarding all invoked 
cloud services as the input data, while the latter takes each 
service’s invocation records as the input data. Hence, in this 
paper, we mainly present the Service-oriented TLGCN model 
for better readability and simplification, whose structure and 
flowchart are illustrated in Fig. 2.  

As shown in Fig. 2, TLGCN consists of the following three 
main modules:  
(a) The attribute characteristics extraction module receives the 

input QoS matrix and adopts a fully-connected network to 
acquire the nonlinear service representations;  

(b) The high-order connectivity information extraction module 
iteratively performs light graph convolution to learn smooth 
representation for users and services on their interaction 
graph;  

(c) The prediction module performs estimation, e.g., inner 
product, to obtain the unknown QoS data based on the 
resultant combined latent features of users and services.  

TLGCN’s detailed descriptions are as below. 

A. Attribute Characteristics Extraction Module 

We argue that by feeding the known invocation records in a 
user-service QoS matrix, the target LFA model can learn more 
accurate nonlinear representations for services. Hence, we 
design the attribute characteristics extraction module and 
incorporate the data density-oriented modeling mechanism into 
it to accommodate the sparsity of QoS data. Fig. 2(a) illustrates 

the whole architecture of it and Fig. 3 depicts the propagation 
process of a specified service s, whose details are as below. 

Input Layer. The input layer receives service-oriented 
QoS data, i.e., a |S|×|U| QoS matrix Q regarded as the attribute 
characteristics of services. As illustrated in Figs. 2(a) and 3, the 
known data are marked with real numbers denoting the user-
service invocation records (e.g., throughput values) and the 
remaining unknown ones are marked with question marks. 
Since the real-world QoS data are mostly highly sparse, the 
prior methods filling the unknown parts with artificial values, 
e.g., zero values, are time-consuming and can cause accuracy 
loss. Hence, following the data density-oriented principle, 
TLGCN only activates the input layer nodes based on the 
known user-service interactions to achieve high efficiency. 

Hidden Layer. The attribute characteristics extraction 
module achieves multiple fully-connected hidden layers to 
learn high level of nonlinear latent features. As shown in Fig. 
2(a), Hk denotes the k-th layer latent feature matrix, Wk and Bk 
denote the corresponding weight matrix and bias vector in k-th 
layer. Note that the k-th layer node count Fk is set uniformly for 
simplicity, i.e., F1=F2=⋯=FK=F. For the first layer, we present 
the mapping formula as: 

 

1 1 1
, 1 , , ,s f s u u f f

u s

h a q w b


 
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                       (1) 

where qs,u, h
1 
s,f, w

1 
u,f and b1 

f  are the single entries in Q, H1, W1 and 
B1, Λ(s) represents the known entry subset related to s, and a1(∙) 
indicates the first-layer activation function, which can be 
hyperbolic tangent (tanh), sigmoid or Rectified Linear Unit 
(ReLU), among others. Note that since |Λ(s)|≪|U|, (2) reduces 
the computational and storage cost greatly. 
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Fig. 2. The structure and flowchart of the proposed TLGCN model.



For the (2~K)-th hidden layers, the computing process is 
based on a fully-connected network, which is given as: 

1
, , ,

=1

, 
  

 


F
k k k k
s f k s d d f f

d

h a h w b                       (2) 

where hk 
s,f, h

k-1 
s,d , wk 

d,f and bk 
f  are the single entries in Hk, Hk-1, Wk 

and Bk respectively, and ak(∙) is the activation function. 
Different activation functions are tested in our implementation, 
and we find that uniformly adopting sigmoid for all layers 
plays the best effect.  

B. High-Order Connectivity Information Extraction Module 

As discussed in [28-32], to explicitly exploit the high-order 
connectivity information from user-service interaction graph 
can acquire stronger collaborative QoS signal thereby 
augmenting node representations. In recent years, graph 
convolution networks become popular owing to their high 
accuracy and scalability in capturing high-order connectivity 
information, which work by iteratively performing message 
passing to aggregate multi-hop neighborhood information. 
When addressing non-Euclidean QoS data, its complete 
message passing layer with self-connection is defined as: 

 0 .51 .5 0ˆˆ ˆ ,   l l lE D AD E W                         (3) 

where Â=A+I and D̂=D+I. A is a (|U|+|S|)×(|U|+|S|) adjacency 
matrix directly constructed from the bipartite user-service 
interaction graph as: 

0
.
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adj

T
adj

Q
A

Q
                                 (4) 

where Qadj is Q’s adjacency matrix. D is A’s diagonal degree 
matrix, in which each entry Dii denotes the number of 
invocation records regarding each user or service, i.e., the 
nonzero entries in A’s i-th row vector. And I is the identity 
matrix used to integrate the self-connections on nodes. El and 
Wl denote the latent feature matrix and feature transformation 
weight matrix of the l-th layer. σ(∙) is a nonlinear activation 
function such as ReLU. 

Despite GCN’s wide success in various graph learning fields, 
several recent studies [29-32] argue that by appropriately 
simplifying GCN, the performance on CF tasks can be further 
boosted. Inspired by this, we design the high-order connectivity 
information extraction module as depicted in Fig. 2(b) and 
adopt the following message passing strategy in each layer: 

0.5 .1 0 5 .  l lE D AD E                               (5) 

Note that compared with (3), (5) removes: 1) the feature 
transformation, i.e., Wl; 2) the nonlinear activation function, i.e., 
σ(∙); and 3) the self-connection, i.e., I. In this way, for each 
specified user or service, the (l+1)-th layer latent feature can be 
obtained by only aggregating the normalized sum of its 
neighborhood features. Specifically, in (5), the light graph 
convolution operations, i.e., the propagation rules for user u and 
service s are defined as: 
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where 
   

1

N u N s
 is the symmetric normalization form, 

in which N(u) and N(s) denote the directly-connected neighbor 
node sets of u and s. It can avoid the feature scale increasing 
with multiple graph convolution operations and assign different 
importance to each neighbor for higher accuracy and diversity. 
Fig. 4 illustrates the detailed propagation process of user u1 by 
performing (6). After propagating L layers, we can obtain the 
final representations by adopting the layer combination, i.e., the 
weighted sum of the latent features propagated at each layer as: 

0 1 2

0

0 1 2

0 2
0 1

0
2

0 ,

L
L

L
L

E

E E

E E E E

AE A EA

   

   

    

    



  
             (7) 

where 0.5 0.5 A D AD  is A’s symmetrically normalized matrix; 
αl≥0 denotes the importance of l-th layer features to constitute 
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Fig. 3. An illustrative example of extracting the attribute characteristics for 
service s. In the first layer, all input nodes regarding unknown QoS data are 
not activated to obtain high computational efficiency. 
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Fig. 4. An illustrative example of extracting the high-order connectivity 
information for user u1. In light graph convolution, the feature transformation, 
self-connection, and nonlinear activation are all removed, only the normalized 
sum of neighborhood latent features are aggregated towards next layer, whose 
simplified structure reduces training difficulty thereby achieving higher 
estimation accuracy and efficiency compared with the complete one. 



the final representations, we set it uniformly as 1/(L+1) here. 
Note that (7) plays a similar effect to self-connection, and it can 
alleviate the over-smoothing problem. In the whole propagation 
process, E0 is the only parameter matrix to optimize, which is 
easy to train thereby gaining high efficiency and accuracy.  

C. Prediction Module 

For a QoS graph, the attribute characteristics and multi-
hop neighborhood information greatly enrich each node’s 
representation. Hence, by performing attribute characteristics 
extraction and light graph convolution, we address the data 
sparsity problem to some extent and obtain complementary 
latent features. After that, in the prediction module, the 
services’ final latent features are combined as: 

 1
1 ,   



K

S
M E H                          (8) 

where M is the final service feature matrix, and ω denotes the 
importance of E1~|S| and HK in constituting the final latent 
features, which is treated as a hyper parameter to be tuned 
carefully. And we extract N from E as the resultant user latent 
feature matrix, as shown in Fig. 2(c). Based on M and N, 
TLGCN estimates the unknown entries in Q as: 
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where q̂s,u∈Q is the estimation for each qs,u, and cu∈C is the 
bias for u to enlarge the solution space. And then as discussed 
in Section II, we utilize the commonly-adopted Euclidean 
distance-based objective function to optimize the variables as: 
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where Λ denotes the known entry set. And like the input layer 
in the attribute characteristics extraction module, (10) follows 
the data density-oriented modeling principle to optimize the 
variables only on the known entries in Q. Note that the 
combination and estimation strategies can be further extended 
to boost the performance of TLGCN with different methods, 
e.g., an attention-based neural network.  

D. CUDA-Parallelized Sparse Matrix Computation 

To address the high sparsity of QoS data, TLGCN adopts 
the data-density oriented principle in its input and output parts, 
i.e., only based on the known entry set without any data filling, 
for avoiding time and storage consumption. However, existing 
mainstream deep learning frameworks are immature in sparse 
computing and they cannot absolutely support TLGCN’s 
numerous sparse matrix operations in GPU. Hence, following 
the previous studies [33, 34], an efficient CUDA-parallelized 
sparse matrix computation module is specially implemented 
for GPU acceleration of TLGCN. 

As illustrated in Fig. 5, two key schedulers, i.e., SM and 
warp, are adopted in CUDA programming to achieve two-
level sparse matrix computation parallelism. Compressed 
Sparse Row (CSR) format is utilized to re-represent a sparse 
user-service QoS matrix, which is constituted by three arrays: 
a) ptr array storing the row pointers, which denote the position 
of each row’s first entry; b) idx array storing the column 

indexes; and c) val array storing the values of the known data, 
i.e., the known invocation records in QoS data. Note that 
given a target QoS matrix Q, the size of ptr array is |S|, i.e., the 
number of rows or services of Q, while the size of idx and val 
arrays is |Λ|, i.e., the number of Q’s known entries. Based on 
such CSR format, we achieve efficient GPU computing by 
designing some sparse matrix operators (SMOs) [33, 34], e.g., 
the outer product one and the row product one. 

Generally, the size of block significantly influences the 
performance of CUDA-parallelized computation. Since a warp 
consists of 32 threads, it is better to set the size of block as a 
multiple of 32. And owing to that GPU’s various architectures 
has different numbers of SM, we follow the previous studies 
[33, 34] to set the block size to 32×32 in this paper. 

IV. EXPERIMENTS AND RESULTS 

We perform extensive experiments on two real-world QoS 
datasets to evaluate the proposed TLGCN model, and we aim 
at answering the following three research questions (RQs): 
 RQ1. Is the multilayered design of attribute characteristics 

extraction and light graph convolution helpful for improving 
the estimation accuracy of a TLGCN model? 

 RQ2. How do different hyper parameter settings, e.g., the 
latent feature combination weight ω and latent feature 
dimension F, affect the performance of a TLGCN model? 

 RQ3. How does the proposed TLGCN model perform 
compared with state-of-the-art QoS estimators? 

A. General Settings 

Datasets. Two real cloud service QoS data1 collected by 
the WS-Dream system are applied in our experiments, which 
are the largest publicly-available QoS datasets and widely 
adopted in prior studies for QoS estimation [15-28]. On both 
datasets, we carefully design multiple cases to validate each 
model’s performance under different low densities, whose 
details are shown in Table II. Note that the column 
Train:Validation:Test denotes the ratio of training data, 
validation data and testing data, e.g., 1%:4%:95% indicates 
that 1% of Λ are chosen randomly as the training data, 4% of 
Λ are chosen randomly as the validation data, and the 
remaining 95% are chosen as the testing data.  
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Fig. 5. CUDA-parallelized sparse matrix computation module. 

1https://wsdream.github.io/dataset/wsdream_dataset1.html 



TABLE II.  PROPERTIES OF TESTING CASES 

Dataset |Λ| |U| |S| No. Train:Validation:Test 

Response 
Time 
(D1) 

1,873,838 339 5,825 

D1.1 1%:4%:95% 
D1.2 2%:8%:90% 
D1.3 3%:12%:85% 
D1.4 4%:16%:80% 

Throughput 
(D2) 

1,831,253 339 5,825 

D2.1 1%:4%:95% 

D2.2 2%:8%:90% 

D2.3 3%:12%:85% 

D2.4 4%:16%:80% 

Evaluation Metrics. For each tested model, this study 
mainly concerns its estimation accuracy for missing cloud 
service QoS data. Hence, we use two commonly-adopted 
evaluation metrics [16-24], i.e., the Root Mean Squared Error 
(RMSE) and the Mean Absolute Error (MAE), to measure this. 
Generally, the RMSE and MAE are formulated as: 
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where Ψ denotes the testing dataset, |Ψ| denotes the number of 
entries of it. 

Note that to evaluate the computational efficiency of an 
involved model, the GPU training time on each testing case is 
carefully recorded. We implement all experiments in Python 
3.7, except that the compressed sparse matrix parallel program 
is written with CUDA C and compiled with CUDA 10.1. All 
empirical tests are uniformly deployed on a server with a 2.4-
GHz Intel Xeon 4214R CPU, four NVIDIA RTX 3090 GPUs, 
and 128-GB RAM. 

Comparison models. Eight state-of-the-art QoS estimators 
are involved in our comparison, whose details are as below. 

M1. Mult-VAE [35]. A generative model which builds a 
variational AutoEncoder and introduces a multinominal 
distribution into data to perform parameter estimation. 

M2. NeuMF [17]. A widely adopted CF baseline which 
combines multilayered perception and inner product into 
matrix factorization to achieve nonlinear estimation.  

M3. MetaMF [24]. A federated meta matrix factorization 
model for QoS data, which builds a federated learning 
framework to generate private embeddings of users. 

M4. LR-GCCF [32]. A linear GCN-based model which 
removes nonlinearities to enhance the performance and 
empirically explains the layer concatenation operation.   

M5. LightGCN [29]. A light GCN-based QoS estimator, 
which removes feature transformation and nonlinear 
activation to obtain efficient and accurate representation. 

M6. DGCN-HN [36]. A deep GCN-based model, which uses 
hybrid normalization for flexible aggregation and adopts 
residual connection to address over-smoothing problem.  

M7. HMLET [28]. A hybrid method of linear and non-linear 
CF, which is a GCN-based model and proposes a gating 
module to select each node’s best propagation method. 

M8. TLGCN. The model given in Section III. 

Training Settings. The following settings are employed 
for each tested model. 
a) We initialize all the trained variables randomly with Xavier 

method, and optimize all involved models with Adam; 
b) For M1-3, we adopt the model architectures suggested in 

their original papers, and for M4-8, i.e., all GCN-based 
models, the latent feature dimension is fixed to 200; 

c) To achieve fair comparison, we carefully tune each model’s 
hyper parameters to achieve the best performance; 

d) On each testing case, we repeat the splitting and training 
process for ten times and record the final average results; 

e) Each model’s training process terminates if: a) the training 
epoch reaches a preset threshold, i.e., 1000; or b) its 
estimation accuracy keeps decreasing for 30 epochs.  

TABLE III.  THE RMSE AND MAE OF TLGCN WITH DIFFERENT NUMBER OF ATTRIBUTE CHARACTERISTICS EXTRACTION ON ALL TESTING CASES. 

No. 
1 Layer (K=1) 2 Layers (K=2) 3 Layers (K=3) 4 Layers (K=4) 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 
D1.1 1.7595 0.6898 1.7240 0.6963 1.7129 0.6865 1.7321 0.6902 
D1.2 1.5480 0.6471 1.5280 0.6091 1.5230 0.5989 1.5292 0.6035 
D1.3 1.4847 0.6290 1.4512 0.5765 1.4455 0.5600 1.4505 0.5611 
D1.4 1.4424 0.6078 1.4035 0.5455 1.3967 0.5336 1.4042 0.5307 
D2.1 0.9014 0.3378 0.8728 0.3327 0.8660 0.3280 0.8643 0.3297 
D2.2 0.7907 0.3033 0.7779 0.3011 0.7715 0.2944 0.7718 0.2981 
D2.3 0.7074 0.2688 0.6539 0.2445 0.6894 0.2720 0.6880 0.2695 
D2.4 0.6677 0.2473 0.6047 0.2248 0.6535 0.2594 0.6541 0.2587 

TABLE IV.  THE RMSE AND MAE OF TLGCN WITH DIFFERENT NUMBER OF LIGHT GRAPH CONVOLUTION ON ALL TESTING CASES. 

No. 
1 Layer (L=1) 2 Layers (L=2) 3 Layers (L=3) 4 Layers (L=4) 5 Layers (L=5) 6 Layers (L=6) 7 Layers (L=7) 8 Layers (L=8) 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 
D1.1 1.7477 0.6939 1.7330 0.6875 1.7129 0.6865 1.7057 0.6836 1.7104 0.6780 1.7099 0.6794 1.6976 0.6760 1.6986 0.6755 
D1.2 1.5344 0.6079 1.5250 0.6045 1.5230 0.5989 1.5197 0.5984 1.5131 0.5984 1.5119 0.5959 1.5076 0.5959 1.5063 0.5972 
D1.3 1.4533 0.5667 1.4490 0.5674 1.4455 0.5601 1.4454 0.5564 1.4441 0.5603 1.4435 0.5567 1.4434 0.5583 1.4427 0.5657 
D1.4 1.4007 0.5407 1.3965 0.5373 1.3967 0.5337 1.3962 0.5312 1.4019 0.5345 1.3995 0.5307 1.3990 0.5324 1.3962 0.5328 
D2.1 0.8724 0.3312 0.8667 0.3284 0.8660 0.3280 0.8613 0.3267 0.8564 0.3258 0.8543 0.3257 0.8528 0.3261 0.8508 0.3260 
D2.2 0.7807 0.2995 0.7781 0.2984 0.7715 0.2944 0.7668 0.2931 0.7598 0.2916 0.7558 0.2901 0.7504 0.2890 0.7524 0.2895 
D2.3 0.7043 0.2793 0.6962 0.2753 0.6894 0.2720 0.6826 0.2701 0.6748 0.2684 0.6718 0.2675 0.6695 0.2670 0.6665 0.2664 
D2.4 0.6620 0.2618 0.6565 0.2603 0.6535 0.2594 0.6509 0.2585 0.6483 0.2570 0.6460 0.2564 0.6448 0.2572 0.6430 0.2572 



B. Effect of Multilayered Structure (RQ1) 

To investigate whether TLGCN can benefit from the 
multilayered structure of attribute characteristics extraction 
and light graph convolution, we vary the depth of two 
modules, i.e., we search K in {1, 2, 3, 4} and L in {1, 2, 3, 4, 5, 
6, 7, 8}. The experimental results are shown in Tables III and 
IV. Jointly analyzing them, we have the following findings: 
a) Increasing the depth of the attribute characteristics 

extraction module significantly enhances TLGCN’s 
estimation accuracy for missing QoS data. For instance, 
as recorded in Table III, by fixing other hyper parameters 
on D1.3, as K varies from 1 to 3, TLGCN’s RMSE 
decreases from 1.4847 to 1.4455, which achieves the 
estimation error gap (i.e., (ErrorhighErrorlow)/Errorhigh) at 
2.65%. As far the MAE, it decreases from 0.6290 to 0.5600 
with the estimation error gap of 10.97%. Similar situations 
can be found on other testing cases. In most cases, TLGCN 

can achieve the best performance as K=2 or 3, and stacking 
more layers leads to its overfitting.  

b) Capturing the high-order connectivity information from 
user-service interaction graph substantially enhances 
the collaborative QoS signal. As summarized in Table IV, 
on all eight testing cases, the estimation errors decrease 
greatly with the increase of L. For instance, on D2.1, as L=1 
while others being fixed, TLGCN achieves the RMSE and 
MAE at 0.8724 and 0.3312. However, as L increases to 8, 
the values of them both decrease to 0.8508 and 0.3260, i.e., 
the estimation error gap in RMSE and MAE are at 2.48% 
and 1.57%. Note that on most cases, TLGCN achieves the 
highest accuracy as L=8, whose great improvements can be 
attributed to the abundance of high-order connectivity 
information and layer combination addressing the over-
smoothing problem. Hence, it is vital to explicitly exploit 
the collaborative signal from user-service interactions. 
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(a) Errors on D1.1                                  (b) Errors on D1.2                                     (c) Errors on D1.3                                    (d) Errors on D1.4 
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Fig. 6. Errors of TLGCN as ω varies while others being fixed on all testing cases. 

0 100 200 300 400 500
1.700

1.712

1.724

1.736

1.748

1.760
 RMSE    MAE

Value of F

R
M

S
E

0.640

0.658

0.676

0.694

0.712

0.730

 M
A

E

0 100 200 300 400 500
1.520

1.526

1.532

1.538

1.544

1.550
 RMSE    MAE

Value of F

R
M

S
E

0.580

0.596

0.612

0.628

0.644

0.660

 M
A

E

0 100 200 300 400 500
1.440

1.447

1.454

1.461

1.468

1.475
 RMSE    MAE

Value of F

R
M

S
E

0.540

0.552

0.564

0.576

0.588

0.600

 M
A

E

0 100 200 300 400 500
1.380

1.391

1.402

1.413

1.424

1.435
 RMSE    MAE

Value of F

R
M

S
E

0.520

0.532

0.544

0.556

0.568

0.580

 M
A

E
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Fig. 7. Errors of TLGCN as F varies while others being fixed on all testing cases. 



TABLE V.  THE RMSE, WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES. 

No. M1 M2 M3 M4 M5 M6 M7 M8 
D1.1 1.9396±7.7E-4• 1.9718±4.0E-3• 1.9229±2.4E-2• 1.8621±9.2E-5• 1.8147±1.4E-3• 2.0220±2.6E-3• 1.8685±1.2E-2• 1.6990±5.0E-3 
D1.2 1.9141±5.0E-4• 1.7398±7.0E-3• 1.8414±3.1E-2• 1.8443±8.6E-4• 1.6361±8.5E-4• 1.8406±1.6E-3• 1.6499±3.8E-3• 1.5210±4.9E-3 
D1.3 1.8973±9.1E-4• 1.6148±1.6E-3• 1.7820±2.6E-2• 1.7536±8.2E-2• 1.5848±2.8E-4• 1.7278±1.9E-3• 1.5771±3.0E-3• 1.4503±1.7E-3 
D1.4 1.8839±3.3E-4• 1.5318±4.2E-3• 1.7446±1.4E-2• 1.5449±1.2E-2• 1.5514±2.0E-4• 1.6525±1.3E-3• 1.5169±3.2E-3• 1.4016±6.3E-4 
D2.1 1.1404±1.1E-3• 1.0480±1.2E-2• 1.0827±8.4E-3• 1.0971±3.8E-4• 0.9775±2.8E-3• 1.1756±1.2E-3• 1.0578±1.3E-2• 0.8501±9.1E-4 
D2.2 1.1266±6.5E-4• 0.7710±4.8E-3• 0.9995±3.3E-2• 1.0310±1.3E-2• 0.7769±1.4E-3• 1.0756±1.4E-3• 0.8061±1.8E-2• 0.7422±2.3E-3 
D2.3 1.1171±1.3E-3• 0.6727±6.0E-3• 0.9334±1.2E-2• 0.8805±1.5E-2• 0.6674±6.5E-4• 0.9548±2.9E-3• 0.6825±5.3E-3• 0.6125±2.2E-3 
D2.4 1.0992±7.6E-4• 0.6696±5.6E-2• 0.8760±7.7E-3• 0.7467±7.8E-3• 0.5982±1.4E-3• 0.8566±9.3E-4• 0.6411±5.2E-3• 0.5718±2.4E-3 

Win/Loss 8/0 8/0 8/0 8/0 8/0 8/0 8/0 — 
F-Rank* 7.63 3.75 6.00 5.25 2.63 6.50 3.25 1.00 

*A lower F-rank value denotes a higher estimation accuracy for missing QoS data; and • indicates that M8’s RMSE is lower than its peers. 

TABLE VI.  THE MAE, WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES. 

No. M1 M2 M3 M4 M5 M6 M7 M8 
D1.1 0.9399±1.4E-3• 0.7936±2.6E-3• 0.8768±1.8E-2• 0.8899±8.0E-3• 0.7771±8.5E-4• 0.7590±5.2E-4• 0.7571±1.1E-3• 0.6872±1.4E-3 
D1.2 0.9108±5.6E-3• 0.7025±5.3E-3• 0.8814±1.3E-2• 0.8782±8.0E-3• 0.7162±3.1E-3• 0.7452±6.6E-4• 0.7043±1.6E-3• 0.6041±2.8E-3 
D1.3 0.8925±2.4E-3• 0.6413±1.2E-3• 0.8635±1.3E-2• 0.8521±1.4E-2• 0.6845±4.3E-4• 0.7223±4.3E-4• 0.6651±2.2E-3• 0.5632±2.0E-3 
D1.4 0.8562±1.9E-3• 0.6100±2.3E-3• 0.8264±1.3E-2• 0.7498±1.1E-2• 0.6542±6.1E-4• 0.7019±5.9E-4• 0.6288±3.3E-3• 0.5380±1.7E-3 
D2.1 0.5136±5.1E-4• 0.3934±5.0E-3• 0.5472±1.5E-2• 0.5549±9.2E-3• 0.3875±8.0E-4• 0.4380±1.1E-3• 0.3983±2.8E-3• 0.3278±9.8E-4 
D2.2 0.4838±7.1E-4• 0.3035±2.7E-3• 0.5267±2.3E-2• 0.5354±6.8E-3• 0.3147±1.7E-3• 0.3942±3.1E-4• 0.3238±6.9E-3• 0.2864±1.1E-3 
D2.3 0.4767±4.8E-4• 0.2302±6.4E-4 0.4812±2.0E-2• 0.4889±1.3E-2• 0.2647±9.0E-4• 0.3660±6.2E-4• 0.2840±2.9E-3• 0.2303±1.0E-3 
D2.4 0.4775±1.4E-3• 0.2160±7.4E-4• 0.4283±1.7E-2• 0.3889±6.6E-3• 0.2352±8.0E-4• 0.3351±8.4E-4• 0.2674±2.6E-3• 0.2121±8.4E-4 

Win/Loss 8/0 7/1 8/0 8/0 8/0 8/0 8/0 — 
F-Rank* 7.25 2.38 6.88 6.88 3.38 4.75 3.38 1.13 

*A lower F-rank value denotes a higher estimation accuracy for missing QoS data; and • indicates that M8’s RMSE is lower than its peers. 

TABLE VII.  THE TIME COST TO CONVERGE IN RMSE (SEC.), WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES. 

No. M1 M2 M3 M4 M5 M6 M7 M8 
D1.1 20±0.89• 2586±116.63• 324±46.59• 267±28.61• 207±7.62• 263±6.16• 990±215.41• 5±1.17 
D1.2 20±1.04• 1623±307.52• 206±47.65• 187±11.42• 274±14.13• 370±18.87• 1377±157.37• 6±2.03 
D1.3 19±1.69• 2872±433.92• 172±33.05• 687±384.08• 261±12.60• 541±10.72• 1755±108.29• 7±2.26 
D1.4 20±2.50 2391±482.72• 128±29.60• 1028±42.94• 232±10.53• 645±23.18• 1915±113.27• 21±7.80 
D2.1 48±47.72• 3178±456.85• 306±9.68• 314±30.50• 252±17.90• 229±5.14• 1208±251.00• 7±0.46 
D2.2 42±1.94• 2627±450.25• 243±43.49• 821±63.68• 355±17.80• 346±14.48• 1196±96.74• 5±0.26 
D2.3 45±2.72• 2691±233.52• 175±21.71• 796±40.22• 452±28.96• 549±15.20• 2281±88.89• 38±4.57 
D2.4 45±3.65• 1841±337.03• 127±13.27• 771±33.35• 495±17.40• 740±16.64• 2421±220.69• 30±1.46 

Win/Loss 7/1 8/0 8/0 8/0 8/0 8/0 8/0 — 
F-Rank* 1.88 7.88 3.75 5.50 4.13 4.63 7.13 1.13 

*A lower F-rank value denotes a higher efficiency when addressing a QoS matrix; and • denotes that M8’s converging time cost is less than its peers. 

TABLE VIII.  THE TIME COST TO CONVERGE IN MAE (SEC.), WIN/LOSS COUNTS AND FRIEDMAN TEST RESULTS OF TLGCN ON ALL TESTING CASES. 

No. M1 M2 M3 M4 M5 M6 M7 M8 
D1.1 25±2.02• 2552±61.90• 80±18.40• 236±44.67• 247±12.38• 157±13.53• 1205±229.80• 17±3.82 
D1.2 33±9.81• 1544±318.33• 82±69.83• 170±13.89• 418±33.15• 444±14.30• 1791±167.32• 13±4.98 
D1.3 40±2.70• 2851±426.92• 137±93.57• 300±269.10• 410±12.41• 604±12.57• 2037±105.61• 30±9.28 
D1.4 41±1.98• 2470±376.01• 153±34.35• 850±30.21• 438±13.84• 693±19.62• 2112±123.96• 25±12.28 
D2.1 55±54.89• 3102±368.68• 98±32.95• 259±81.15• 309±24.14• 180±2.30• 991±182.41• 15±5.12 
D2.2 52±2.73• 2632±457.16• 192±102.37• 276±220.43• 445±20.52• 329±8.12• 974±89.25• 8±0.67 
D2.3 50±2.87• 2655±228.16• 189±34.68• 655±44.81• 442±24.25• 534±7.79• 1856±65.92• 33±2.78 
D2.4 45±2.36• 1971±320.04• 155±14.60• 642±32.04• 449±26.37• 712±3.48• 2044±152.14• 28±2.32 

Win/Loss 8/0 8/0 8/0 8/0 8/0 8/0 8/0 — 
F-Rank* 2.00 7.75 3.00 4.88 5.00 5.13 7.25 1.00 

*A lower F-rank value denotes a higher efficiency when addressing a QoS matrix; and • denotes that M8’s converging time cost is less than its peers. 

TABLE IX.  RESULTS OF THE WILCOXON SIGNED-RANKS TEST IN RMSE. 

Comparison R+* R- p-value** 
M8 vs M1 36 0 0.0039 
M8 vs M2 36 0 0.0039 
M8 vs M3 36 0 0.0039 
M8 vs M4 36 0 0.0039 
M8 vs M5 36 0 0.0039 
M8 vs M6 36 0 0.0039 
M8 vs M7 36 0 0.0039 

*A higher R+ value denotes M8 has a higher accuracy than its peers;  
**The accepted hypotheses are highlighted with the significance level of 0.1. 

TABLE X.  RESULTS OF THE WILCOXON SIGNED-RANKS TEST IN MAE. 

Comparison R+* R- p-value** 
M8 vs M1 36 0 0.0039 
M8 vs M2 35 1 0.0078 
M8 vs M3 36 0 0.0039 
M8 vs M4 36 0 0.0039 
M8 vs M5 36 0 0.0039 
M8 vs M6 36 0 0.0039 
M8 vs M7 36 0 0.0039 

*A higher R+ value denotes M8 has a higher accuracy than its peers;  
**The accepted hypotheses are highlighted with the significance level of 0.1. 



TABLE XI.  RESULTS OF WILCOXON SIGNED-RANKS TEST ON THE 

CONVERGING TIME COST IN RMSE. 

Comparison R+* R- p-value** 
M8 vs M1 35 1 0.0078 
M8 vs M2 36 0 0.0039 
M8 vs M3 36 0 0.0039 
M8 vs M4 36 0 0.0039 
M8 vs M5 36 0 0.0039 
M8 vs M6 36 0 0.0039 
M8 vs M7 36 0 0.0039 

*A higher R+ value denotes M8 has a higher efficiency than its peers;  
**The accepted hypotheses are highlighted with the significance level of 0.1. 

TABLE XII.  RESULTS OF WILCOXON SIGNED-RANKS TEST ON THE 

CONVERGING TIME COST IN MAE. 

Comparison R+* R- p-value** 
M8 vs M1 36 0 0.0039 
M8 vs M2 36 0 0.0039 
M8 vs M3 36 0 0.0039 
M8 vs M4 36 0 0.0039 
M8 vs M5 36 0 0.0039 
M8 vs M6 36 0 0.0039 
M8 vs M7 36 0 0.0039 

*A higher R+ value denotes M8 has a higher efficiency than its peers;  
**The accepted hypotheses are highlighted with the significance level of 0.1. 

C. Analysis of Hyper Parameter Sensititvity (RQ2) 

The performance of a deep learning-based model can be 
affected by many hyper parameters, e.g., the batch size, initial 
learning rate, and regularization coefficient. For TLGCN: the 
batch size is fixed at 512; the learning rate is searched 
amongst {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}; and the 
coefficient of L2 regularization is tuned in {10-5, 10-4, ⋯, 101, 
102}. Considering two unique hyper parameters of TLGCN, 
i.e., the latent feature combination weight ω and latent feature 
dimension F. Figs. 6 and 7 depict the influence of them while 
others being fixed. From them, we have the following findings:  
a) ω significantly affects TLGCN’s RMSE/MAE. For 

instance, as depicted in Fig. 6(b), on D1.2, as ω varies from 
0.1 to 0.9 while others being fixed, the RMSE increases 
from 1.5200 to 1.5895 with the RMSE increment of 4.37%. 
Considering the MAE, it increases from 0.5983 to 0.6910 
with the MAE increment of 13.42%. Similar situations are 
encountered in other cases. Note that ω is data-dependent, 
as shown in Fig. 6, on D1.1-1.3, TLGCN achieves the lower 
RMSE as ω=0.1, while on D1.4-2.4, the lower RMSE is 
achieved as ω=0.8. Hence, for different datasets, ω should 
be tuned carefully to obtain a satisfactory performance. 

b) F also greatly influences TLGCN’s estimation accuracy, 
and it performs differently in RMSE and MAE. For 
instance, as illustrated in Fig. 7(a), on D1.1, by fixing other 
hyper parameters, as F=50, TLGCN achieves the RMSE at 
1.7366. However, as F is set to 200, the RMSE decreases to 
1.7099 with the estimation error gap of 1.54%. Note that 
F’s effects vary greatly in RMSE and MAE, for instance, as 
shown in Fig. 7(e), on D2.1, as F increases from 20 to 500, 
the RMSE increases from 0.8388 to 0.8615 which achieves 
the RMSE increment at 2.63%. However, the MAE 
decreases from 0.3448 to 0.3274 with the estimation error 
gap of 5.05%. We attribute this phenomenon to that the 
testing cases are still not big enough, and we will test 
TLGCN’s performance on larger-scale datasets to deeply 
understand it in our future work. 

D. Comparison with State-of-the-Art Models (RQ3) 

We perform detailed comparisons with seven state-of-the-
art QoS estimators. Tables V-VIII present the RMSE, MAE, 
GPU time cost to converge in RMSE and MAE of M1-8 on all 
testing cases. To deeply understand the experimental results, in 
Table V-VIII, the second-to-last rows record the win/loss 
counts of M8 versus other models; the last rows summarize the 
Friedman statistical results of all tested models [37]. Note that 
as significance level=0.05, the hypothesis that all involved 
models are significantly different is accepted. And the results 
of Wilcoxon singed-ranks test are recorded in Table IX-XII 

[37], which is helpful to check whether M8 possesses higher 
estimation accuracy for missing QoS data and computational 
efficiency than its peers. From these summarizations, we 
achieve the following findings: 
a) M8, i.e., TLGCN significantly outperforms its peers in 

estimation accuracy for missing QoS data. Owing to its 
full modeling for the attribute characteristics and high-order 
connectivity information, on all testing cases, M8 achieves 
satisfactory performance gain. For instance, as recorded in 
Table V, on D2.1, M8 achieves the RMSE at 0.8501, which 
is about 25.46% lower than M1’s 1.1404, 18.88% lower 
than M2’s 1.0480, 21.48% lower than M3’s 1.0827, 22.51% 
lower than M4’s 1.0971, 13.03% lower than M5’s 0.9775, 
27.69% lower than M6’s 1.1756, and 19.64% lower than 
M7’s 1.0578. Similar situations in RMSE and MAE are also 
encountered on other testing cases. More persuasively, M8 
also has the lowest F-rank value and supported Wilcoxon 
signed-ranks test results, e.g., as shown in Table V, in 
RMSE, M8’s F-rank value is 1.00, which is lower than 7.63, 
3.75, 6.00, 5.25, 2.63, 6.50, and 3.25 achieved by M1-7. 

b) M8, i.e., TLGCN has substantially higher computational 
efficiency than that of its peers when addressing a QoS 
matrix. As recorded in Tables VII-VIII and XI-XII, since it 
adopts data density-oriented principle and light graph 
convolution, M8’s time cost in RMSE/MAE is far less than 
its peers. For instance, as shown in Table VII, on D1.1, in 
RMSE, M8 takes 5 seconds to converge, which is 25.00% 
of 20 seconds by M1, 0.19% of 2586 seconds by M2, 
1.54% of 324 seconds by M3, 1.87% of 267 seconds by M4, 
2.42% of 207 seconds by M5, 1.90% of 263 seconds by M6, 
and 0.51% of 990 seconds by M7; MAE is similar. 

E. Summary 

We summarize that TLGCN achieves important virtues: 
a) High estimation accuracy for missing user-service QoS data;  
b) Highly competitive computational efficiency.  

V. CONCLUSION 

Aiming at performing efficient and accurate representation 
learning for QoS data, this paper proposes a TLGCN model. It 
constructs a multilayered fully-connected network to extract 
services’ attribute characteristics; uses light graph convolution 
to learn high-order connectivity information from user-service 
interactions; and incorporates data density-oriented principle to 
achieve high computational efficiency. Experimental results on 
two real QoS data demonstrate that TLGCN significantly 
outperforms the state-of-the-arts. Following the recent 
researches [38], we plan to boost the strengths of its graph 
convolution on larger-scale QoS data in our future work. 
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