<div dir="ltr">
<span></span>
<p style="margin-bottom:0cm;line-height:100%;background:transparent">
<font color="#000000"><b>INRAE </b></font><font color="#000000"><b>is
recruiting</b></font><font color="#000000"><b>: </b></font><font color="#000000"><b>a
</b></font><font color="#0000ff"><b>permanent position </b></font><font color="#000000"><b>for
a </b></font><font color="#0000ff"><b>research fellow</b></font><font color="#000000"><b>
in </b></font><font color="#0000ff"><b>reinforcement learning</b></font><font color="#000000"><b>
is open in our research unit MIAT, located in </b></font><font color="#0000ff"><b>Toulouse,
Occitanie (France)</b></font><font color="#000000"><b>.</b></font></p>
<p style="margin-bottom:0cm;line-height:100%;background:transparent"><b><font color="#000000">To
apply :</font></b></p>
<p style="margin-bottom:0cm;line-height:100%;background:transparent"><span style="font-variant:normal"><font color="#1155cc"><span style="text-decoration:none"><font face="Arial, sans-serif, serif, EmojiFont"><font size="2" style="font-size:11pt"><span style="font-style:normal"><u><span style="font-weight:normal"><span style="background:transparent"><a href="https://jobs.inrae.fr/en/open-competitions/open-competitions-research-scientists-job-profiles-crcn/cr-2025-mathnum-4">https://jobs.inrae.fr/en/open-competitions/open-competitions-research-scientists-job-profiles-crcn/cr-2025-mathnum-4</a></span></span></u></span></font></font></span></font></span></p>
<p style="margin-bottom:0cm;line-height:100%;background:transparent"><font color="#000000"><b>For
any additional information,</b></font><font color="#000000"> please
feel free to contact Régis Sabbadin (</font><font color="#0000ff"><a href="mailto:regis.sabbadin@inrae.fr">regis.sabbadin@inrae.fr</a></font><font color="#000000">),
scientific coordinator, or Nathalie Vialaneix
(</font><font color="#0000ff"><a href="mailto:nathalie.vialaneix@inrae.fr">nathalie.vialaneix@inrae.fr</a></font><font color="#000000">),
unit director.</font></p>
<p style="margin-bottom:0.25cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Tentative recruitment timeline:</strong></p>
<ul><li><p style="margin-bottom:0cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Application opening:</strong>
January 28, 2025</p>
</li><li><p style="margin-bottom:0cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Application deadline:</strong>
March 4, 2025</p>
</li><li><p style="margin-bottom:0cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Eligibility examination:</strong>
April 2025</p>
</li><li><p style="margin-bottom:0cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Final selection
examination:</strong> June 2–18, 2025</p>
</li><li><p style="margin-bottom:0.25cm;line-height:115%;background:transparent"><strong style="font-weight:bold">Start date:</strong> From September 1, 2025</p>
</li></ul>
<p align="left" style="margin-bottom:0.25cm;line-height:115%;background:transparent"><font color="#000000"><b>Your
mission</b></font><font color="#000000">: You will be positioned
within the SCIDyn (Simulation, Control and Inference of
Agro-environmental and Biological Dynamics) team, which consists of
nine researchers and engineers, primarily from the fields of computer
science and statistics. One of the main research areas of the SCIDyn
team is reinforcement learning (RL), a rapidly expanding field in
designing decision models for agriculture, forestry, etc. Classical
RL approaches are applicable when a model of the system to be
controlled is available; however, when only observational data of the
system are accessible, inverse RL approaches are required. You will
contribute to strengthening the team's expertise in reinforcement
learning in this area, with a mission to develop innovative RL
approaches and algorithms in collaboration with SCIDyn researchers,
within a context where experiments are costly but data of varying
types, quality, and complexity are available from our agronomist and
ecologist partners. </font>
</p>
<p align="justify" style="margin-bottom:0cm;line-height:115%;background:transparent"><font color="#000000">In
particular, your research project will aim to develop and implement
RL algorithms using observed trajectories of controlled systems,
where observations come from various sources: direct experiments,
simulation, observations of other agents, experiments on different
agroecosystems, etc. You will explore one or more areas of RL
(Inverse RL, Batch RL, imitation RL, Deep RL, etc.) in alignment with
the SCIDyn team’s finalized objectives, with the support of team
researchers skilled in single and multi-agent RL. </font>
</p>
<p style="margin-bottom:0cm;line-height:100%;background:transparent"><br>
</p>
</div>