<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0in;
mso-margin-bottom-alt:auto;
margin-left:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle18
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle23
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:73089825;
mso-list-template-ids:389852968;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l1
{mso-list-id:650986771;
mso-list-template-ids:2046428748;}
@list l1:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level2
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level3
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level5
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level6
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level8
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level9
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p style="margin-top:0in"><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">Advances in computational power and statistical algorithms, in conjunction with the increasing availability of large datasets, have led to a Cambrian explosion
of machine learning (ML) methods. For population researchers, these methods are useful not only for predicting population dynamics but also as tools to improve causal inference tasks. However, the rapid evolution of this literature, coupled with terminological
disparities from conventional approaches, renders these methods enigmatic and arduous for many population researchers to grasp.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">This workshop on November 5 to 6, 2024 at the Max Planck Intsitute for Demographic Research (MPIDR) in Rostock, Germany, clarifies the goals, techniques, and applications of machine
learning methods for population research. The workshop covers<o:p></o:p></span></p>
<ul type="disc">
<li class="MsoNormal" style="color:#00112B;mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo3;box-sizing: border-box">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif">an introduction to ML methods for population researchers,<o:p></o:p></span></li><li class="MsoNormal" style="color:#00112B;mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo3;box-sizing: border-box">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif">showcases of ML applications to answer causal questions,<o:p></o:p></span></li><li class="MsoNormal" style="color:#00112B;mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo3;box-sizing: border-box">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif">discussions of the current developments of ML for population health, fertility and family dynamics, and<o:p></o:p></span></li><li class="MsoNormal" style="color:#00112B;mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;mso-list:l0 level1 lfo3;box-sizing: border-box">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif">fosters critical discussions about the shortfalls of these techniques.<o:p></o:p></span></li></ul>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">The main focus of this workshop is on ML techniques using quantitative population data and research questions, not on ML language models. The workshop consists of keynotes, contributed
sessions, and a tutorial.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">One keynote lecture will be delivered by Prof. Ian Lundberg (Cornell University, <a href="https://www.ianlundberg.org/"><i><span style="color:#006C66">https://www.ianlundberg.org/</span></i></a>).<br>
Prof. Jennie E. Brand (UCLA, <a href="https://www.profjenniebrand.com/"><i><span style="color:#006C66">https://www.profjenniebrand.com/</span></i></a>) will deliver an online talk.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">This in-person workshop will take place in November 5-6 at the Max Planck Institute for Demographic Research in Rostock. We invite population researchers with interest in ML applications.
We aim to receive contributions from different fields of population sciences, such as population health, formal and social demography, public health and economics, among others.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">We invite submission of original research abstract with relevance to ML and population sciences (max 500 words) and a CV (max. one page) to
<a href="mailto:MLworkshop@demogr.mpg.de">MLworkshop@demogr.mpg.de</a>.<br>
<br>
Submission Deadline: <strong><span style="font-family:"Arial",sans-serif">30. April 2024</span></strong><br>
<br>
Decisions on the selection will be communicated before May 15th.<br>
Please direct any questions to <a href="mailto:MLworkshop@demogr.mpg.de">MLworkshop@demogr.mpg.de</a>.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">Organization committee: Angela Carollo, Aapo Hiilamo, Mikko Myrskyla.<o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<em><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">The workshop has no fees. Participants are expected to cover their travel and accommodation but limited financial support, offered on a competitive basis, is available for junior
scientists or scientists from low-middle income countries. Please indicate the request for such funding at the time of abstract submission.</span></em><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B"><o:p></o:p></span></p>
<p style="margin-top:0in;box-sizing: border-box;margin-bottom:2rem;font-variant-ligatures: normal;font-variant-caps: normal;orphans: 2;widows: 2;-webkit-text-stroke-width: 0px;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;word-spacing:0px">
<em><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B">The workshop is organized by the Max Planck Institute for Demographic Research and The Max Planck – University of Helsinki Center for Social Inequalities in Population Health.</span></em><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#00112B"><o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<font face="verdana,arial,helvetica,sans-serif" size="1">
--<br />This mail has been sent through the MPI for Demographic Research. Should you receive a mail that is apparently from a MPI user without this text displayed, then the address has most likely been faked. If you are uncertain about the validity of this message, please check the mail header or ask your system administrator for assistance.</font>
</body>
</html>