<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-text-html" lang="x-unicode">
      <div class="moz-text-html" lang="x-unicode">
        <div class="moz-text-html" lang="x-unicode">
          <div class="moz-text-html" lang="x-unicode">
            <div class="moz-text-html" lang="x-unicode">
              <div class="moz-text-html" lang="x-unicode">
                <p><b>DEADLINE EXTENSION</b></p>
                <p>**Apologies for cross-posting** </p>
                We are happy to announce that the deadline for
                submissions has been extended until <u><b>July 1</b></u>.</div>
              <div class="moz-text-html" lang="x-unicode"><br>
              </div>
              <div class="moz-text-html" lang="x-unicode"><br>
                <p><b>CALL FOR PAPERS</b><br>
                  <br>
                  The <b>full-day virtual</b> workshop:<br>
                  <br>
                  <b>Machine Learning for HRI: Bridging the Gap between
                    Action and Perception (ML-HRI)</b><br>
                  <br>
                  In conjunction with the <b>31st IEEE International
                    Conference on Robot and</b><b> Human Interactive
                    Communication (RO-MAN) - August 22, 2022    </b><br>
                  <br>
                  Webpage: <a href="https://ml-hri2022.ivai.onl/">https://ml-hri2022.ivai.onl/</a></p>
                <p><br>
                </p>
                <p><b>I. Aim and Scope</b></p>
                <p>A key factor for the acceptance of robots as partners
                  in complex and dynamic human-centered environments is
                  their ability to continuously adapt their behavior.
                  This includes learning the most appropriate behavior
                  for each encountered situation based on its specific
                  characteristics as perceived through the robots
                  senors. To determine the correct actions the robot has
                  to take into account prior experiences with the same
                  agents, their current emotional and mental states, as
                  well as their specific characteristics, e.g.
                  personalities and preferences. Since every encountered
                  situation is unique, the appropriate behavior cannot
                  be hard-coded in advance but must be learned over time
                  through interactions. Therefore, artificial agents
                  need to be able to learn continuously what behaviors
                  are most appropriate for certain situations and people
                  based on feedback and observations received from the
                  environment to enable more natural, enjoyful, and
                  effective interactions between humans and robots.<br>
                  <br>
                  This workshop aims to attract the latest research
                  studies and expertise in human-robot interaction and
                  machine learning at the intersection of rapidly
                  growing communities, including social and cognitive
                  robotics, machine learning, and artificial
                  intelligence, to present novel approaches aiming at
                  integrating and evaluating machine learning in HRI.
                  Furthermore, it will provide a venue to discuss the
                  limitations of the current approaches and future
                  directions towards creating robots that utilize
                  machine learning to improve their interaction with
                  humans.<br>
                  <br>
                  <b>II. Keynote Speakers and Panelists</b><br>
                </p>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <ol>
                  <li><b>Dorsa Sadigh</b> – Stanford University – USA<br>
                  </li>
                  <li><b>Oya Celiktutan</b> – King's College London – UK</li>
                  <li><b>Sean Andrist </b>– Microsoft – USA</li>
                  <li><b>Stefan Wermter</b> – University of Hamburg –
                    Germany<br>
                  </li>
                </ol>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <p><b>III. Submission</b><br>
                </p>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <ol>
                  <li>For paper submission, use the following EasyChair
                    web link: <a
                      href="https://easychair.org/conferences/?conf=mlhri2022">Paper
                      Submission</a>.</li>
                  <li>Use the RO-MAN 2022 format: <a
                      href="http://www.smile.unina.it/ro-man2022/call-for-papers/">RO-MAN
                      Papers Templates</a>.</li>
                  <li>Submitted papers should be 4-6 pages for regular
                    papers and 2 pages for position papers.<br>
                  </li>
                </ol>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <p>    The primary list of topics covers the following
                  points (but not limited to):</p>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <ul>
                  <li>Autonomous robot behavior adaptation<br>
                  </li>
                  <li>Interactive learning approaches for HRI<br>
                  </li>
                  <li>Continual learning<br>
                  </li>
                  <li>Meta-learning<br>
                  </li>
                  <li>Transfer learning<br>
                  </li>
                  <li>Learning for multi-agent systems<br>
                  </li>
                  <li>User adaptation of interactive learning approaches<br>
                  </li>
                  <li>Architectures, frameworks, and tools for learning
                    in HRI<br>
                  </li>
                  <li>Metrics and evaluation criteria for learning
                    systems in HRI<br>
                  </li>
                  <li>Legal and ethical considerations for real-word
                    deployment of learning approaches</li>
                </ul>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <p><b>IV. Important Dates</b><br>
                </p>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <ol>
                  <li>Paper submission: <b><strike>June 17, 2021</strike></b><b>
                      July 1, 2022 (AoE)</b></li>
                  <li>Notification of acceptance: <b>August 1, 2022
                      (AoE)</b></li>
                  <li>Camera ready: <b>August 14, 2022 (AoE)</b><br>
                  </li>
                  <li>Workshop: <b>August 22, 2022</b><br>
                  </li>
                </ol>
                <blockquote>
                  <blockquote> </blockquote>
                </blockquote>
                <b>V. Organizers</b><br>
                <blockquote> </blockquote>
                <ol>
                  <li><b>Oliver Roesler</b> – IVAI – Germany<br>
                  </li>
                  <li><b>Elahe Bagheri</b> – IVAI – Germany</li>
                  <li><b>Amir Aly</b> – University of Plymouth – UK</li>
                </ol>
              </div>
            </div>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>